Yokoya

Naoto

Naoto Yokoya

Yokoya Naoto

横矢

横矢直人

University of Tokyo

東京大学

hyperspectral

ハイパースペクトル

remote sensing

リモートセンシング

pattern recognition

パターン認識

data fusion

データ融合

Journal publications

  1. L. Ding, D. Hong, M. Zhao, H. Chen, C. Li, J. Deng, N. Yokoya, L. Bruzzone, and J. Chanussot, ”A survey of sample-efficient deep learning for change detection in remote sensing: tasks, strategies, and challenges,” IEEE Geoscience and Remote Sensing Magazine, 2025.
    PDF    Quick Abstract

  2. D. Ibañez, R. Fernandez-Beltran, F. Pla, N. Yokoya, and J. Xia, ”Multi-modal consistent loss diffusion model for Sentinel-3 single image super resolution,” Neural Computing and Applications, vol. 37, pp. 7121–7143, 2025.
    PDF    Quick Abstract

  3. C. Broni-Bediako, J. Xia, J. Song, H. Chen, M. Siam, and N. Yokoya, ”Generalized few-shot semantic segmentation in remote sensing: Challenge and benchmark,” IEEE Geoscience and Remote Sensing Letter, 2024.
    PDF    Quick Abstract

  4. X. Zhang, N. Yokoya, X. Gu, Q. Tian, and L. Bruzzone ”Local-to-global cross-modal attention-aware fusion for HSI-X semantic segmentation,” IEEE Transactions on Geoscience and Remote Sensing, 2024.
    PDF    Quick Abstract

  5. C.I. Cira, M.Á. Manso-Callejo, N. Yokoya, T. Sălăgean, and A.C. Badea, ”Impact of tile size and tile overlap on the prediction performance of convolutional neural networks trained for road classification,” Remote Sensing, vol. 16, no. 15, 2024.
    PDF    Quick Abstract

  6. W. He, Z. Wu, N. Yokoya, and X. Yuan, ”An interpretable and flexible fusion prior to boost hyperspectral imaging reconstruction,” Information Fusion, vol. 111, 102528, 2024.
    PDF    Quick Abstract

  7. H. Chen, J. Song, C. Han, J. Xia, and N. Yokoya, ”ChangeMamba: Remote sensing change detection with spatio-temporal state space model,” IEEE Transactions on Geoscience and Remote Sensing, 2024.
    PDF    Quick Abstract

  8. H. Chen, C. Lan, J. Song, C. Broni-Bediako, J. Xia, and N. Yokoya, ”Land-cover change detection using paired OpenStreetMap data and optical high-resolution imagery via object-guided Transformer,” IEEE Transactions on Geoscience and Remote Sensing, 2024.
    PDF    Quick Abstract

  9. W. Gan, N. Mo, H. Xu, and N. Yokoya, ”A comprehensive framework for 3D occupancy estimation in autonomous driving,” IEEE Transactions on Intelligent Vehicles, 2024.
    PDF    Quick Abstract

  10. X. Ding, J. Kang, Y. Bai, A. Zhang, J. Liu, and N. Yokoya, ”Towards robustness and efficiency of coherence-guided complex convolutional sparse coding for interferometric phase restoration,” IEEE Transactions on Computational Imaging, 2024.
    PDF    Quick Abstract

  11. T. Xu, T.Z. Huang, L.J. Deng, J.L. Xiao, C. Broni-Bediako, J. Xia, and N. Yokoya, ”A coupled tensor double-factor method for hyperspectral and multispectral image fusion,” IEEE Transactions on Geoscience and Remote Sensing, 2024.
    PDF    Quick Abstract

  12. D. Hong, B. Zhang, X. Li, Y. Li, C. Li, J. Yao, N. Yokoya, H. Li, P. Ghamisi, X. Jia, A. Plaza, G. Paolo, J. A. Benediktsson, J. Chanussot, ”SpectralGPT: Spectral remote sensing foundation model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
    PDF    Quick Abstract

  13. N. Yokoya, J. Xia, and C. Broni-Bediako, ”Submeter-level land cover mapping of Japan,” International Journal of Applied Earth Observation and Geoinformation, vol. 127, p. 103660, 2024.
    PDF    Quick Abstract

  14. S.A. Ahmadi, A. Mohammadzadeh, N. Yokoya, and A. Ghorbanian, ”BD-SKUNet: Selective-kernel UNets for building damage assessment in high-resolution satellite images,” Remote Sensing, vol. 16, no. 1, p. 182, 2024.
    PDF    Quick Abstract

  15. R. Iizuka, J. Xia, and N. Yokoya, ”Frequency-based optimal style mix for domain generalization in semantic segmentation of remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-14, 2024.
    PDF    Quick Abstract

  16. H. Chen, J. Song, C. Wu, B. Du, and N. Yokoya, ”Exchange means change: an unsupervised single-temporal change detection framework based on intra-and inter-image patch exchange,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 206, pp. 87-105, 2023.
    PDF    Quick Abstract

  17. Y. Bai, J. Kang, X. Ding, A. Zhang, Z. Zhang, and N. Yokoya, ”LaMIE: Large-dimensional multipass InSAR phase estimation for distributed scatterers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023.
    PDF    Quick Abstract

  18. M. Dalponte, Y.T. Solano-Correa, D. Marinelli, S. Liu, N. Yokoya, D. Gianelle, ”Detection of forest windthrows with bitemporal COSMO-SkyMed and Sentinel-1 SAR data,” Remote Sensing of Environment, vol. 297, p. 113787, 2023.
    PDF    Quick Abstract

  19. C. Broni-Bediako, J. Xia, and N. Yokoya, ”Real-time semantic segmentation: A brief survey and comparative study in remote sensing,” IEEE Geoscience and Remote Sensing Magazine, pp. 2–33, early access, 2023.
    PDF    Quick Abstract

  20. D. Hong, J. Yao, C. Li, D. Meng, N. Yokoya, and J. Chanussot, ”Decoupled-and-coupled networks: Self-supervised hyperspectral image super-resolution with subpixel fusion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-12, 2023.
    PDF    Quick Abstract

  21. W. Gan, H. Xu, Y. Huang, S. Chen, and N. Yokoya, ”V4D: Voxel for 4D novel view synthesis,” IEEE Transactions on Visualization and Computer Graphics, 2023.
    PDF    Quick Abstract

  22. M. Dalponte, Y. T. Solano-Correa, D. Marinelli, S. Liu, N. Yokoya, D. Gianelle, ”Detection of forest windthrows with bitemporal COSMO-SkyMed and Sentinel-1 SAR data,” Remote Sensing of Environment, 2023.
    PDF    Quick Abstract

  23. T. Xu, T.-Z. Huang, L.-J. Deng, H.-X. Dou, and N. Yokoya, ”TR-STF: a fast and accurate tensor ring decomposition algorithm via defined scaled tri-factorization,” Computational and Applied Mathematics, vol. 42, p. 234, 2023.
    PDF    Quick Abstract

  24. H. Chen, N. Yokoya, and M. Chini, ”Fourier domain structural relationship analysis for unsupervised multimodal change detection,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 198, pp. 99-114, 2023.
    PDF    Quick Abstract

  25. X. Sun, D. Yin, F. Qin, H. Yu, W. Lu, F. Yao, Q. He, X. Huang, Z. Yan, P. Wang, C. Deng, N. Liu, Y. Yang, W. Liang, R. Wang, C. Wang, N. Yokoya, R. Hänsch, K. Fu, ”Revealing influencing factors on global waste distribution via deep-learning based dumpsite detection from satellite imagery,” Nature Communications, vol. 14, no. 1444, 2023.
    PDF    Quick Abstract

  26. W. He, T. Uezato, and N. Yokoya, ”Interpretable deep attention prior for image restoration and enhancement,” IEEE Transactions on Computational Imaging, vol. 9, pp. 185-196, 2023.
    PDF    Quick Abstract

  27. J. Xia, N. Yokoya, B. Adriano, and K. Kanemoto, ”National high-resolution cropland classification of Japan with agricultural census information and multi-temporal multi-modality datasets,” International Journal of Applied Earth Observation and Geoinformation, 2023.
    PDF    Quick Abstract

  28. H. Chen, N. Yokoya, C. Wu and B. Du, ”Unsupervised multimodal change detection based on structural relationship graph representation learning,” IEEE Transactions on Geoscience and Remote Sensing, 2022.
    PDF    Quick Abstract

  29. X. Ding, J. Kang, Z. Zhang, Y. Huang, J. Liu, and N. Yokoya, ”Coherence-guided complex convolutional sparse coding for interferometric phase restoration,” IEEE Transactions on Geoscience and Remote Sensing, 2022.
    PDF    Quick Abstract

  30. D. Ibañez, R. Fernandez-Beltran, F. Pla, and N. Yokoya, ”Masked auto-encoding spectral-spatial transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-14, 2022.
    PDF    Code    Quick Abstract

  31. T. Xu, T.Z. Huang, L.J. Deng, and N. Yokoya, ”An iterative regularization method based on tensor subspace representation for hyperspectral image super-resolution,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-16, 2022.
    PDF    Code    Quick Abstract

  32. D. Ibañez, R. Fernandez-Beltran, F. Pla, and N. Yokoya, ”DAT-CNN: Dual attention temporal CNN for time-resolving Sentinel-3 vegetation indices,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 2632-2643, 2022.
    PDF    Code    Quick Abstract

  33. J. Xia, N. Yokoya, and G. Baier, ”DML: Differ-modality learning for building semantic segmentation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-14, 2022.
    PDF    Quick Abstract

  34. Z. Li, F. Lu, H. Zhang, L. Tu, J. Li, X. Huang, C. Robinson, N. Malkin, N. Jojic, P. Ghamisi, R. Hänsch, and, N. Yokoya, ”The Outcome of the 2021 IEEE GRSS Data Fusion Contest - Track MSD: Multitemporal semantic change detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2022.
    PDF    Quick Abstract

  35. Y. Ma, Y. Li, K. Feng, Y. Xia, Q. Huang, H. Zhang, C. Prieur, G. Licciardi, H. Malha, J. Chanussot, P. Ghamisi, R. Hänsch, and, N. Yokoya, ”The Outcome of the 2021 IEEE GRSS Data Fusion Contest - Track DSE: Detection of settlements without electricity,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 12375-12385, 2021.
    PDF    Quick Abstract

  36. X. Sun, P. Wang, Z. Yan, W. Diao, X. Lu, Z. Yang, Y. Zhang, D. Xiang, C. Yan, J. Guo, B. Dang, W. Wei, F. Xu, C. Wang, R. Hansch, M. Weinmann, N. Yokoya, and K. Fu, ”Automated high-resolution earth observation image interpretation: Outcome of the 2020 Gaofen Challenge,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2021.
    PDF    Quick Abstract

  37. W. He, Y. Chen, N. Yokoya, C. Li, and Q. Zhao, ”Hyperspectral super-resolution via coupled tensor ring factorization,” Pattern Recognition, 2021.
    PDF    Quick Abstract

  38. W. He, N. Yokoya, X. Yuan, ”Fast hyperspectral image recovery via non-iterative fusion of dual-camera compressive hyperspectral imaging,” IEEE Transactions on Image Processing, (accepted for publication), 2021.
    PDF    Quick Abstract

  39. N. Le, T. D. Pham, N. Yokoya, and H. N. Thang, ”Learning from multimodal and multisensory earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam,” International Journal of Remote Sensing, (in press), 2021.

  40. J. Xia, N. Yokoya, B. Adriano, L. Zhang, G. Li, Z. Wang, ”A benchmark high-resolution GaoFen-3 SAR dataset for building semantic segmentation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2021.
    PDF    Quick Abstract

  41. D. Hong, L. Gao, J. Yao, N. Yokoya, J. Chanussot, U. Heiden, B. Zhang, ”Endmember-guided unmixing network (EGU-Net): A general deep learning framework for self-supervised hyperspectral unmixing,” IEEE Transactions on Neural Networks and Learning Systems, (in press), 2021.
    PDF    Code    Quick Abstract

  42. Y. Qu, H. Qi, C. Kwan, N. Yokoya, J. Chanussot, ”Unsupervised and unregistered hyperspectral image super-resolution with mutual dirichlet-net,” IEEE Transactions on Geoscience and Remote Sensing, (in press), 2021.
    PDF    Quick Abstract

  43. G. Baier, A. Deschemps, M. Schmitt, and N. Yokoya, ”Synthesizing optical and SAR imagery from land cover maps and auxiliary raster data,” IEEE Transactions on Geoscience and Remote Sensing, (in press), 2021.
    PDF    Code    Quick Abstract

  44. C. Robinson, K. Malkin, N. Jojic, H. Chen, R. Qin, C. Xiao, M. Schmitt, P. Ghamisi, R. Haensch, and N. Yokoya, ”Global land cover mapping with weak supervision: Outcome of the 2020 IEEE GRSS Data Fusion Contest,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (in press), 2021.
    PDF    Quick Abstract

  45. B. Adriano, N. Yokoya, J. Xia, H. Miura, W. Liu, M. Matsuoka, S. Koshimura, ”Learning from multimodal and multitemporal earth observation data for building damage mapping,” ISPRS Journal of Photogrammetry and Remote Sensing (in press), 2021.
    PDF    Quick Abstract

  46. D. Hong, W. He, N. Yokoya, J. Yao, L. Gao, L. Zhang, J. Chanussot, and X.X. Zhu, ”Interpretable hyperspectral AI: When non-convex modeling meets hyperspectral remote sensing,” IEEE Geoscience and Remote Sensing Magazine (in press), 2021.
    PDF    Quick Abstract

  47. T. D. Pham, N. Yokoya, T. T. T. Nguyen, N. N. Le, N. T. Ha, J. Xia, W. Takeuchi, T. D. Pham, ”Improvement of mangrove soil carbon stocks estimation in North Vietnam using Sentinel-2 data and machine learning approach,” GIScience & Remote Sensing, 2020.
    PDF    Quick Abstract

  48. M. Pourshamsi, J. Xia, N. Yokoya, M. Garcia, M. Lavalle, E. Pottier, and H. Balzter, ”Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine learning,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 172, pp. 79-94, 2021.
    PDF    Quick Abstract

  49. J. Xia, N. Yokoya, and T. D. Pham, ”Probabilistic mangrove species mapping with multiple-source remote-sensing datasets using label distribution learning in Xuan Thuy National Park, Vietnam,” Remote Sensing, vol. 12, no. 22, p. 3834, 2020.
    PDF    Quick Abstract

  50. N. Yokoya, K. Yamanoi, W. He, G. Baier, B. Adriano, H. Miura, and S. Oishi, ”Breaking limits of remote sensing by deep learning from simulated data for flood and debris flow mapping,” IEEE Transactions on Geoscience and Remote Sensing, (early access), 2020.
    PDF    Code    Quick Abstract

  51. Y. Lian, T. Feng, J. Zhou, M. Jia, A. Li, Z. Wu, L. Jiao, M. Brown, G. Hager, N. Yokoya, R. Haensch, and B. Le Saux, ”Large-Scale Semantic 3D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest - Part B,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., (early access), 2020.
    PDF    Quick Abstract

  52. S. Kunwar, H. Chen, M. Lin, H. Zhang, P. D'Angelo, D. Cerra, S. M. Azimi, M. Brown, G. Hager, N. Yokoya, R. Haensch, and B. Le Saux, ”Large-Scale Semantic 3D Reconstruction: Outcome of the 2019 IEEE GRSS Data Fusion Contest - Part A,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., (early access), 2020.
    PDF    Quick Abstract

  53. W. He, Q. Yao, C. Li, N. Yokoya, Q. Zhao, H. Zhang, L. Zhang, ”Non-local meets global: An iterative paradigm for hyperspectral image restoration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, (early access), 2020.
    PDF    Quick Abstract

  54. D. Hong, J. Kang, N. Yokoya, and J. Chanussot, ”Graph-induced aligned learning on subspaces for hyperspectral and multispectral data,” IEEE Transactions on Geoscience and Remote Sensing, (early access), 2020.
    PDF    Quick Abstract

  55. D. Hong, N. Yokoya, J. Chanussot, J. Xu, and X. X. Zhu, ”Joint and progressive subspace analysis (JPSA) with spatial-spectral manifold alignment for semi-supervised hyperspectral dimensionality reduction,” IEEE Transactions on Cybernetics, (accepted for publication), 2020.
    PDF    Quick Abstract

  56. D. Hong, L. Gao, N. Yokoya, J. Yao, J. Chanussot, Q. Du, and B. Zhang, ”More diverse means better: Multimodal deep learning meets remote-sensing imagery classification,” IEEE Transactions on Geoscience and Remote Sensing, (accepted for publication), 2020.
    PDF    Quick Abstract

  57. D. Hong, N. Yokoya, G.-S. Xia, J. Chanussot, and X. X. Zhu, ”X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data,” ISPRS Journal of Photogrammetry and Remote Sensing, (accepted for publication), 2020.
    PDF    Quick Abstract

  58. E. Mas, R. Paulik, K. Pakoksung, B. Adriano, L. Moya, A. Suppasri, A. Muhari, R. Khomarudin, N. Yokoya, M. Matsuoka, and S. Koshimura, ”Characteristics of tsunami fragility functions developed using different sources of damage data from the 2018 Sulawesi earthquake and tsunami,” Pure and Applied Geophysics, 2020.
    Quick Abstract

  59. M. E. Paoletti, J. M. Haut, P. Ghamisi, N. Yokoya, J. Plaza, and A. Plaza, ”U-IMG2DSM: Unpaired simulation of digital surface models with generative adversarial networks,” IEEE Geoscience and Remote Sensing Letters, (Early Access), pp. 1-5, 2020.
    PDF    Code    Quick Abstract

  60. Y. Chen, T.-Z. Huang, W. He, N. Yokoya, and X.-L. Zhao, ”Hyperspectral image compressive sensing reconstruction using subspace-based nonlocal tensor ring decomposition,” IEEE Transactions on Image Processing, (Early Access), pp. 1-16, 2020.
    PDF    Quick Abstract

  61. G. Baier, W. He, and N. Yokoya, ”Robust nonlocal low-rank SAR time series despeckling considering speckle correlation by total variation regularization,” IEEE Transactions on Geoscience and Remote Sensing, accepted for publication, 2020.
    PDF    Code    Quick Abstract

  62. C. Yoo, J. Im, D. Cho, N. Yokoya, J. Xia, and B. Bechtel, ”Estimation of all-weather 1km MODIS land surface temperature for humid summer days,” Remote Sensing, vol. 12, p. 1398, 2020.
    PDF    Quick Abstract

  63. T.D. Pham, N. Yokoya, J. Xia, N.T. Ha, N.N. Le, T.T.T. Nguyen, T.H. Dao, T.T.P. Vu, T.D. Pham, and W. Takeuchi, ”Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the red river delta biosphere reserve, Vietnam,” Remote Sensing, vol. 12, p. 1334, 2020.
    PDF    Quick Abstract

  64. J. Kang, D. Hong, J. Liu, G. Baier, N. Yokoya, and B. Demir, ”Learning convolutional sparse coding on complex domain for interferometric phase restoration,” IEEE Transactions on Neural Networks and Learning Systems, accepted for publication, 2020.
    PDF    Code    Quick Abstract

  65. L. Moya , A. Muhari, B. Adriano, S. Koshimura, E. Mas, L. R. M. Perezd, and N. Yokoya, ”Detecting urban changes using phase correlation and l1-based sparse model for early disaster response: A case study of the 2018 Sulawesi Indonesia earthquake-tsunami,” Remote Sensing of Environment, accepted for publication, 2020.
    PDF    Quick Abstract

  66. T. D. Pham, N. N. Le, N. T. Ha, L. V. Nguyen, J. Xia, N. Yokoya, T. T. To, H. X. Trinh, L. Q. Kieu, and W. Takeuchi, ”Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with a fusion of Sentinel-2 and ALOS-2 PALSAR-2 data in Can Gio Biosphere Reserve, Vietnam,” Remote Sensing, vol. 12, no. 5, pp. 777, 2020.
    PDF    Quick Abstract

  67. B. Adriano, N. Yokoya, H. Miura, M. Matsuoka, and S. Koshimura, ”A semiautomatic pixel-object method for detecting landslides using multitemporal ALOS-2 intensity images,” Remote Sensing, vol. 12, no. 3, pp. 561, 2020.
    PDF    Quick Abstract

  68. T. Uezato, N. Yokoya, and W. He, ”Illumination invariant hyperspectral image unmixing based on a digital surface model,” IEEE Transactions on Image Processing, accepted for publication, 2019.
    PDF    Quick Abstract

  69. D. Hong, X. Wu, P. Ghamisi, J. Chanussot, N. Yokoya, and X. X. Zhu, ”Invariant attribute profiles: A spatial-frequency joint feature extractor for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., accepted for publication, 2019.
    PDF    Quick Abstract

  70. Y. Chen, L. Huang, L. Zhu, N. Yokoya, and X. Jia, ”Fine-grained classification of hyperspectral imagery based on deep learning,” Remote Sensing, accepted for publication, 2019.
    PDF    Quick Abstract

  71. Y. Chen, W. He, N. Yokoya, and T.-Z. Huang, ”Non-local tensor ring decomposition for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens., accepted for publication, 2019.
    PDF    Quick Abstract

  72. D. Hong, N. Yokoya, J. Chanussot, J. Xu, and X. X. Zhu, ”Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction,” ISPRS Journal of Photogrammetry and Remote Sensing, accepted for publication, 2019.
    PDF    Quick Abstract

  73. D. Hong, J. Chanussot, N. Yokoya, J. Kang, and X. X. Zhu, ”Learning shared cross-modality representation using multispectral-LiDAR and hyperspectral data,” IEEE Geosci. Remote Sens. Lett., accepted for publication, 2019.
    PDF    Quick Abstract

  74. Y. Chen, W. He, N. Yokoya, and T.-Z. Huang, ”Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition,” ISPRS Journal of Photogrammetry and Remote Sensing, (accepted for publication), 2019.
    PDF    Quick Abstract

  75. Y. Chen, W. He, N. Yokoya, and T.-Z. Huang, ”Hyperspectral image restoration using weighted group sparsity regularized low-rank tensor decomposition,” IEEE Trans. Cybernetics, (accepted for publication), 2019.
    PDF    Quick Abstract

  76. W. He, N. Yokoya, L. Yuan, and Q. Zhao, ”Remote sensing image reconstruction using tensor ring completion and total-variation,” IEEE Trans. Geosci. Remote Sens., (accepted for publication), 2019.
    PDF    Quick Abstract

  77. Y. Xu, B. Du, L. Zhang, D. Cerra, M. Pato, E. Carmona, S. Prasad, N. Yokoya, R. Hansch, and B. Le Saux, ”Advanced multi-sensor optical remote sensing for urban land use and land cover classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., (accepted for publication), 2019.
    PDF    Quick Abstract

  78. B. Adriano, J. Xia, G. Baier, N. Yokoya, S. Koshimura, ”Multi-source data fusion based on ensemble learning for rapid building damage mapping during the 2018 Sulawesi Earthquake and Tsunami in Palu, Indonesia,” Remote Sensing, vol. 11, no. 7, p. 886, 2019.
    PDF    Quick Abstract

  79. P. Ghamisi, B. Rasti, N. Yokoya, Q. Wang, B. Höfle, L. Bruzzone, F. Bovolo, M. Chi, K. Anders, R. Gloaguen, P. M. Atkinson, and J. A. Benedikt, ”Multisource and multitemporal data fusion in remote sensing,” IEEE Geoscience and Remote Sensing Magazine, vol. 7, no. 1, pp. 6-39, 2019.
    PDF    Quick Abstract

  80. T. D. Pham, N. Yokoya, D. T. Bui, K. Yoshino, and D. A. Friess, ”Remote sensing approaches for monitoring mangrove species, structure and biomass: opportunities and challenges,” Remote Sensing, vol. 11, no. 3, pp. 230, 2019.
    PDF    Quick Abstract

  81. D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, ”CoSpace: Common subspace learning from hyperspectral-multispectral correspondences,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4349-4359, 2019.
    PDF    Quick Abstract

  82. D. Hong, N. Yokoya, N. Ge, J. Chanussot, and X. X. Zhu, ”Learnable manifold alignment (LeMA) : A semi-supervised cross-modality learning framework for land cover and land use classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 147, pp. 193-205, 2019.
    PDF    Quick Abstract

  83. D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, ”An augmented linear mixing model to address spectral variability for hyperspectral unmixing,” IEEE Transactions on Image Processing, vol. 28, no. 4, pp. 1923-1938, 2018.
    PDF    Quick Abstract

  84. W. He and N. Yokoya, ”Multi-temporal Sentinel-1 and -2 data fusion for optical image simulation,” ISPRS International Journal of Geo-Information, vol. 7, no. 10: 389, 2018.
    PDF    Quick Abstract

  85. L. Guanter, M. Brell, J. C.-W. Chan, C. Giardino, J. Gomez-Dans, C. Mielke, F. Morsdorf, K. Segl, and N. Yokoya, ”Synergies of spaceborne imaging spectroscopy with other remote sensing approaches,” Surveys in Geophysics, pp. 1-31, 2018.
    PDF    Quick Abstract

  86. T.-Y. Ji, N. Yokoya, X. X. Zhu, and T.-Z. Huang, ”Non-local tensor completion for multitemporal remotely sensed images inpainting,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 6, pp. 3047-3061, 2018.
    PDF    Quick Abstract

  87. J. Xia, N. Yokoya, and A. Iwasaki, ”Fusion of hyperspectral and LiDAR data with a novel ensemble classifier,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 6, pp. 957-961, 2018.
    PDF    Quick Abstract

  88. P. Ghamisi and N. Yokoya, ”IMG2DSM: Height simulation from single imagery using conditional generative adversarial nets,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 794-798, 2018.
    PDF    Quick Abstract

  89. N. Yokoya, P. Ghamisi, J. Xia, S. Sukhanov, R. Heremans, I. Tankoyeu, B. Bechtel, B. Le Saux, G. Moser, and D. Tuia, ”Open data for global multimodal land use classification: Outcome of the 2017 IEEE GRSS Data Fusion Contest,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 5, pp. 1363-1377, 2018.

  90. J. Xia, P. Ghamisi, N. Yokoya, and A. Iwasaki, ”Random forest ensembles and extended multi-extinction profiles for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1, pp. 202-216, 2018.
    PDF    Quick Abstract

  91. P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and A. Plaza, ”Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art,” IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 4, pp. 37-78, 2017.
    PDF    Quick Abstract

  92. H. Zheng, P. Du, J. Chen, J. Xia, E. Li, Z. Xu, X. Li, and N. Yokoya, ”Performance evaluation of downscaling Sentinel-2 imagery for land use and land cover classification by spectral-spatial features,” Remote Sensing, vol. 9, no. 12: 1274, 2017.
    PDF    Quick Abstract

  93. J. Xia, N. Yokoya, and A. Iwasaki, ”Classification of large-sized hyperspectral imagery using fast machine learning algorithms,” Journal of Applied Remote Sensing, vol. 11, no. 3, 035005, 2017.
    PDF    Quick Abstract

  94. N. Yokoya, C. Grohnfeldt, and J. Chanussot, ”Hyperspectral and multispectral data fusion: a comparative review of the recent literature,” IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 2, pp. 29-56, 2017.
    PDF    Code    Quick Abstract

  95. N. Yokoya, ”Texture-guided multisensor superresolution for remotely sensed images,” Remote Sensing, vol. 9, no. 4: 316, 2017.
    PDF    Quick Abstract

  96. D. Hong, N. Yokoya, and X. X. Zhu, ”Learning a robust local manifold representation for hyperspectral dimensionality reduction,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2960-2975, 2017.
    PDF    Quick Abstract

  97. N. Yokoya, X. X. Zhu, and A. Plaza, ”Multisensor coupled spectral unmixing for time-series analysis,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2842-2857, 2017.
    PDF    Quick Abstract

  98. J. Xia, N. Yokoya, and A. Iwasaki, ”Hyperspectral image classification with canonical correlation forests,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 421-431, 2017.
    PDF    Quick Abstract

  99. N. Yokoya, J. C. W. Chan, and K. Segl, ”Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images,” Remote Sensing, vol. 8, no. 3: 172, 2016.
    PDF    Quick Abstract

  100. M.A. Veganzones, M. Simoes, G. Licciardi, N. Yokoya, J.M. Bioucas-Dias, and J. Chanussot, “Hyperspectral super-resolution of locally low rank images from complementary multisource data,” IEEE Transactions on Image Processing, vol. 25, no. 1, pp. 274-288, 2016.
    PDF    Quick Abstract

  101. L. Loncan, L. B. Almeida, J. Bioucas Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simoes, J. Y. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya, “Hyperspectral pansharpening: a review,” IEEE Geoscience and Remote Sensing Magazine, vol. 3, no. 3, pp. 27-46, 2015.
    PDF    Quick Abstract

  102. T. Matsuki, N. Yokoya, and A. Iwasaki, ”Hyperspectral tree species classification of Japanese complex mixed forest with the aid of LiDAR data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 2177-2187, 2015.
    PDF    Quick Abstract

  103. N. Yokoya and A. Iwasaki, ”Object detection based on sparse representation and Hough voting for optical remote sensing imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 2053-2062, 2015.
    PDF    Quick Abstract

  104. M. Kokawa, N. Yokoya, H. Ashida, J. Sugiyama, M. Tsuta, M. Yoshimura, K. Fujita, M. Shibata, ”Visualization of gluten, starch, and butter in pie pastry by fluorescence fingerprint imaging,” Food and Bioprocess Technology, online ISSN: 1935-5149, Sep. 2014.
    PDF    Quick Abstract

  105. N. Yokoya, S. Nakazawa, T. Matsuki, and A. Iwasaki, ”Fusion of hyperspectral and LiDAR data for landscape visual quality assessment,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2419-2425, 2014.
    PDF    Quick Abstract

  106. N. Yokoya, J. Chanussot, and A. Iwasaki, ”Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1430-1437, 2014.
    PDF    Quick Abstract

  107. N. Yokoya, N. Mayumi, and A. Iwasaki, ”Cross-calibration for data fusion of EO-1/Hyperion and Terra/ASTER,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 419-426, 2013.
    PDF    Quick Abstract

  108. N. Yokoya, T. Yairi, and A. Iwasaki, ”Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528-537, 2012.
    PDF    Quick Abstract    MATLAB    Python    Readme

  109. N. Yokoya, N. Miyamura, and A. Iwasaki, “Detection and correction of spectral and spatial misregistrations for hyperspectral data using phase correlation method,” Applied Optics, vol. 49, no. 24, pp. 4568-4575, 2010.
    PDF    Quick Abstract

Top-tier conferences

  1. W. Gan, F. Liu, H. Xu, and N. Yokoya, ”GaussianOcc: Fully self-supervised and efficient 3D occupancy estimation with Gaussian splatting,” Proc. ICCV, 2025.
    PDF    Code    Quick Abstract

  2. Z. Wu, Y. Chen, N. Yokoya, and W. He, ”MP-HSIR: A multi-prompt framework for universal hyperspectral image restoration,” Proc. ICCV, 2025.
    PDF    Code    Quick Abstract

  3. C. Ning, W. Xuan, W. Gan, and N. Yokoya, ”LR2Depth: Large-region aggregation at low resolution for efficient monocular depth estimation,” Proc. IROS (oral), 2025.
    PDF    Code    Quick Abstract

  4. Z. Liu, Z. Cheng, and N. Yokoya, ”Neural hierarchical decomposition for single image plant modeling,” Proc. CVPR, 2025.
    Project Page    PDF    Code    Quick Abstract

  5. J. Li, X. Dong, W. He, and N. Yokoya, ”Wavelength- and depth-aware deep image prior for blind hyperspectral imagery deblurring with coarse depth guidance,” Proc. WACV, 2025.
    PDF    Quick Abstract

  6. J. Song, H. Chen, W. Xuan, J. Xia, and N. Yokoya, ”SynRS3D: A synthetic dataset for global 3D semantic understanding from monocular remote sensing imagery,” Proc. NeurIPS D&B Track (spotlight), 2024.
    PDF    Code    Quick Abstract

  7. Z. Liu, Y. Li, F. Tu, R. Zhang, Z. Cheng, and N. Yokoya, ”DeepTreeSketch: Neural graph prediction for faithful 3D tree modeling from sketches,” Proc. CHI, 2024.
    Project Page    Video    PDF    Quick Abstract

  8. X. Dong and N. Yokoya, ”Understanding dark scenes by contrasting multi-modal observations,” Proc. WACV, 2024.
    PDF    Code    Quick Abstract

  9. J. Song, H. Chen, and N. Yokoya, ”SyntheWorld: A large-scale synthetic dataset for land cover mapping and building change detection,” Proc. WACV, 2024.
    PDF    Data    Quick Abstract

  10. J. Xia, N. Yokoya, B. Adriano, and C. Broni-Bediako, ”OpenEarthMap: A benchmark dataset for global high-resolution land cover mapping,” Proc. WACV, 2023.
    Project Page    PDF    Quick Abstract

  11. X. Dong, N. Yokoya, L. Wang, and T. Uezato, ”Learning mutual modulation for self-supervised cross-modal super-resolution,” Proc. ECCV, 2022.
    PDF    Quick Abstract

  12. W. He, Q. Yao, N. Yokoya, T. Uezato, H. Zhang, L. Zhang, ”Spectrum-aware and transferable architecture search for hyperspectral image restoration,” Proc. ECCV, 2022.
    PDF    Quick Abstract

  13. N. Mo, W. Gan, N. Yokoya, and S. Chen, “ES6D: A computation efficient and symmetry-aware 6D pose regression framework,” Proc. CVPR, 2022.
    PDF    Quick Abstract

  14. T. Uezato, D. Hong, N. Yokoya, and W. He, “Guided deep decoder: Unsupervised image pair fusion,” Proc. ECCV (spotlight), August 23-28, 2020.
    PDF    Quick Abstract

  15. W. He, Q. Yao, C. Li, N. Yokoya, and Q. Zhao, “Non-local meets global: An integrated paradigm for hyperspectral denoising,” Proc. CVPR, Long Beach, CA, US, June 16-20, 2019.
    PDF    Quick Abstract

Other peer-reviewed conferences and workshops

  1. C. Broni-Bediako, J. Xia, and N. Yokoya, ”Unsupervised domain adaptation architecture search with self-training for land cover mapping,” Proc. EarthVision CVPRW, 2024.
    PDF    Quick Abstract

  2. J. Song, B. Adriano, and N. Yokoya, ”Disaster detection from SAR images with different off-nadir angles using unsupervised image translation,” Proceedings of the 2nd CDCEO Workshop, IJCAI-ECAI, 2022, pp. 14-20.
    PDF    Quick Abstract

  3. B. Adriano, N. Yokoya, K. Yamanoi, and S. Oishi, ”Predicting flood inundation depth based-on machine learning and numerical simulation,” Proceedings of the 2nd CDCEO Workshop, IJCAI-ECAI, 2022, pp. 58-64.
    PDF    Quick Abstract

  4. J. Xia, N. Yokoya, and B. Adriano, “Building damage mapping with self-positive unlabeled learning,” NeurIPS Workshop, 2021.
    PDF    Quick Abstract

  5. W. He, L. Yuan, and N. Yokoya, “Total-variation-regularized tensor ring completion for remote sensing image reconstruction,” Proc. ICASSP, Brighton, UK, May 12-17, 2019.
    PDF    Quick Abstract

  6. D. Hong, N. Yokoya, J. Xu, and X. X. Zhu, “Joint & progressive learning from high-dimensional data for multi-label classification,” Proc. ECCV, Munich, Germany, September 8-14, 2018.
    PDF    Quick Abstract

  7. J. Xia, N. Yokoya, and A. Iwasaki, “Boosting for domain adaptation extreme learning machines for hyperspectral image classification,” Proc. IGARSS, Valencia, Spain, July 22-27, 2018.
    PDF    Quick Abstract

  8. V. Ferraris, N. Yokoya, N. Dobigeon, and M. Chabert, “A comparative study of fusion-based change detection methods for multi-band images with different spectral and spatial resolutions,” Proc. IGARSS, Valencia, Spain, July 22-27, 2018.
    PDF    Quick Abstract

  9. D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “Learning A low-coherence dictionary to address spectral variability for hyperspectral unmixing,” Proc. ICIP, Beijing, China, September 17-20, 2017.
    PDF    Quick Abstract

  10. N. Yokoya, P. Ghamisi, and J. Xia, “Multimodal, multitemporal, and multisource global data fusion for local climate zones classification based on ensemble learning,” Proc. IGARSS, Texas, USA, July 23-28, 2017.
    PDF    Quick Abstract

  11. J. Xia, N. Yokoya, and A. Iwasaki, “Ensemble of transfer component analysis for domain adaptation in hyperspectral remote sensing image classification,” Proc. IGARSS, Texas, USA, July 23-28, 2017.
    PDF    Quick Abstract

  12. J. Xia, N. Yokoya, and A. Iwasaki, “Hyperspectral image classification with partial least square forest,” Proc. IGARSS, Texas, USA, July 23-28, 2017.
    PDF    Quick Abstract

  13. J. Xia, N. Yokoya, and A. Iwasaki, “Tree species classification in Japanese mixed forest with hyperspectral and LiDAR data using rotation forest algorithm,” Proc. EARSeL IS, Zurich, Switzerland, April 19-21, 2017.
    PDF    Quick Abstract

  14. J. Xia, N. Yokoya, and A. Iwasaki, “A novel ensemble classifier of hyperspectral and LiDAR data using morphological features,” Proc. ICASSP, New Orleans, US, March 5-9, 2017.
    PDF    Quick Abstract

  15. J. Xia, N. Yokoya, and A. Iwasaki, “Mapping of large size hyperspectral imagery using fast machine learning algorithms,” Proc. ACRS, Colombo, Sri Lanka, October 17-21, 2016.
    PDF    Quick Abstract

  16. N. Yokoya, X. X. Zhu, and A. Plaza, “Graph-regularized coupled spectral unmixing for multisensor time-series analysis,” Proc. WHISPERS, LA, US, August 21-24, 2016.
    PDF    Quick Abstract

  17. N. Yokoya and P. Ghamisi, “Land-cover monitoring using time-series hyperspectral data via fractional-order Darwinian particle swarm optimization segmentation,” Proc. WHISPERS, LA, US, August 21-24, 2016.
    PDF    Quick Abstract

  18. J. C.-W. Chan and N. Yokoya, “Mapping land covers of Brussels capital region using spatially enhanced hyperspectral images,” Proc. WHISPERS, LA, US, August 21-24, 2016.
    Quick Abstract

  19. D. Hong, N. Yokoya, and X. X. Zhu, “The K-LLE algorithm for nonlinear dimensionality reduction of large-scale hyperspectral data,” Proc. WHISPERS, LA, US, August 21-24, 2016.
    Quick Abstract

  20. D. Hong, N. Yokoya, and X. X. Zhu, “Local manifold learning with robust neighbors selection for hyperspectral dimensionality reduction,” Proc. IGARSS, Beijing, China, July 10-15, 2016.
    Quick Abstract

  21. N. Yokoya and A. Iwasaki, “Generalized-Hough-transform object detection using class-specific sparse representation for local-feature detection,” Proc. IGARSS, Milan, Italy, July 26-31, 2015.
    Quick Abstract

  22. D. Niina, N. Yokoya, and A. Iwasaki, “Detector anomaly detection and stripe correction of hyperspectral data,” Proc. IGARSS, Milan, Italy, July 26-31, 2015.
    Quick Abstract

  23. L. Loncan, L. B. Almeida, J. Bioucas Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simoes, J. Y. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya, “Comparison of nine hyperspectral pansharpening methods,” Proc. IGARSS, Milan, Italy, July 26-31, 2015.
    Quick Abstract

  24. N. Yokoya and X. X. Zhu, “Graph regularized coupled spectral unmixing for change detection,” Proc. WHISPERS, Tokyo, Japan, June 2-5, 2015.
    PDF    Quick Abstract

  25. T. Takayama, N. Yokoya, and A. Iwasaki, “Optimal hyperspectral classification for paddy field with semisupervised self-learning,” Proc. WHISPERS, Tokyo, Japan, June 2-5, 2015.
    PDF    Quick Abstract

  26. N. Yokoya, M. Kokawa, and J. Sugiyama, “Spectral unmixing of fluorescence fingerprint imagery for visualization of constituents in pie pastry,” Proc. ICIP, Paris, France, October 27-30, 2014.
    PDF    Quick Abstract

  27. C. F. Liew, N. Yokoya, and T. Yairi, “Facial alignment by using sparse initialization and random forest,” Proc. ICIP, Paris, France, October 27-30, 2014.
    Quick Abstract

  28. N. Yokoya and A. Iwasaki, “Object localization based on sparse representation for remote sensing imagery,” Proc. IGARSS, Québec, Canada, July 13-18, 2014.
    PDF    Quick Abstract

  29. N. Yokoya and A. Iwasaki, “Airborne unmixing-based hyperspectral super-resolution using RGB imagery,” Proc. IGARSS, Québec, Canada, July 13-18, 2014.
    PDF    Quick Abstract

  30. N. Yokoya and A. Iwasaki, “Effect of unmixing-based hyperspectral super-resolution on target detection,” Proc. WHISPERS, Lausanne, Switzerland, June 24-27, 2014.
    PDF    Quick Abstract

  31. T. Matsuki, N. Yokoya, and A. Iwasaki, “Hyperspectral tree species classification with an aid of LiDAR data,” Proc. WHISPERS, Lausanne, Switzerland, June 24-27, 2014.
    PDF    Quick Abstract

  32. T. Matsuki, N. Yokoya, and A. Iwasaki, “Fusion of hyperspectral and LiDAR data for tree species classification,” Proc. 34th ACRS, Bali, Indonesia, Oct. 20-24, 2013.
    PDF    Quick Abstract

  33. N. Yokoya and A. Iwasaki, “Hyperspectral and multispectral data fusion mission on hyperspectral imager suite (HISUI),” Proc. IGARSS, Melbourne, Australia, Jul. 21-26, 2013.
    PDF    Quick Abstract

  34. N. Yokoya and A. Iwasaki, “Design of combined optical imagers using unmixing-based hyperspectral data fusion,” Proc. WHISPERS, Florida, USA, Jun. 25-28, 2013.
    PDF    Quick Abstract

  35. N. Yokoya and A. Iwasaki, “Optimal design of hyperspectral imager suite (HISUI) for hyperspectral and multispectral data fusion,” Proc. ISRS, Tokyo, Japan, May. 15-17, 2013.
    Quick Abstract

  36. N. Yokoya, J. Chanussot, and A. Iwasaki, “Generalized bilinear model based nonlinear unmixing using semi-nonnegative matrix factorization,” Proc. IGARSS, Munich, Germany, Jul. 22-27, 2012.
    PDF    Quick Abstract

  37. A. Iwasaki, N. Yokoya, T. Arai, Y. Itoh, and N. Miyamura, “Similarity measure for spatial-spectral registration in hyperspectral era,” Proc. IGARSS, Munich, Germany, Jul. 22-27, 2012.
    Quick Abstract

  38. N. Yokoya, J. Chanussot, and A. Iwasaki, “Hyperspectral and multispectral data fusion based on nonlinear unmixing,” Proc. WHISPERS, Shanghai, China, Jun. 4-7, 2012.
    PDF    Quick Abstract

  39. N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled non-negative matrix factorization for hyperspectral and multispectral data fusion: application for pasture classification,” Proc. IGARSS, Vancuber, Canada, Jul. 24-29, 2011.
    PDF    Quick Abstract

  40. N. Yokoya, T. Yairi, and A. Iwasaki, “Hyperspectral, multispectral, and panchromatic data fusion based on non-negative matrix factorization,” Proc. WHISPERS, Lisbon, Portugal, Jun. 6-9, 2011.
    PDF    Quick Abstract

  41. N. Yokoya, and A. Iwasaki, “A maximum noise fraction transform based on a sensor noise model for hyperspectral data,” Proc. 31st ACRS, Hanoi, Vietnam, Nov. 1-5, 2010.
    PDF    Quick Abstract

  42. N. Yokoya, N. Miyamura, and A. Iwasaki, “Preprocessing of hyperspectral imagery with consideration of smile and keystone properties,” Proc. SPIE 7857-10, Incheon, Korea, Oct. 11-15, 2010.
    PDF    Quick Abstract

  43. N. Yokoya, N. Miyamura, and A. Iwasaki, “Detection and correction of spectral and spatial misregistration for hyperspectral data,” Proc. IGARSS, Honolulu, HI, Jul. 25-30, 2010.
    PDF    Quick Abstract

  44. A. Iwasaki, M. Koga, H. Kanno, N. Yokoya, T. Okuda, and K. Saito, “Challenge of ASTER digital elevation model,” Proc. IGARSS, Honolulu, HI, Jul. 25-30, 2010.
    Quick Abstract

Technical report

  1. N. Yokoya and A. Iwasaki, ”Airborne hyperspectral data over Chikusei,” Space Appl. Lab., Univ. Tokyo, Japan, Tech. Rep. SAL-2016-05-27, May 2016.
    PDF    Quick Abstract    Quick View    ENVI (1.0 GB)    MATLAB (1.4 GB)    Readme