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Nonlinear Unmixing of Hyperspectral Data Using
Semi-Nonnegative Matrix Factorization
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Abstract— Nonlinear spectral mixture models have recently
received particular attention in hyperspectral image processing.
In this paper, we present a novel optimization method of non-
linear unmixing based on a generalized bilinear model (GBM),
which considers the second–order scattering of photons in a
spectral mixture model. Semi-nonnegative matrix factorization
(semi-NMF) is used for the optimization to process a whole
image in matrix form. When endmember spectra are given, the
optimization of abundance and interaction abundance fractions
converge to a local optimum by alternating update rules with
simple implementation. The proposed method is evaluated using
synthetic datasets considering its robustness for the accuracy
of endmember extraction and spectral complexity, and shows
smaller errors in abundance fractions rather than conventional
methods. GBM-based unmixing using semi-NMF is applied to
the analysis of an airborne hyperspectral image taken over
an agricultural field with many endmembers, and it visualizes
the impact of a nonlinear interaction on abundance maps at
reasonable computational cost.

Index Terms— Generalized bilinear model (GBM), nonlinear
unmixing, semi-nonnegative matrix  factorization.

I. INTRODUCTION

SPECTRAL unmixing is an important task for hyperspec-
tral image interpretation. Many researchers have worked

on this problem using a linear mixture model (LMM), in which
it is assumed that an observed spectrum is a linear combination
of several endmember spectra. The LMM is a simplified
spectral mixture model that considers only first-order scattered
photons by neglecting multiple photon interactions. Although
LMM-based unmixing methods can retrieve physically mean-
ingful results, nonlinearity in a spectral mixture model has
been pointed out in many works [1]–[12]. In recent years,
nonlinear unmixing for hyperspectral images has been receiv-
ing particular attention in remote sensing image exploitation.
Nonlinear spectral mixing occurs owing to multiple reflections
and transmissions from a surface [2]. Bioucas–Dias et al. [13]
classified nonlinear unmixing into two scenarios: an intimate
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mixture and a multilayered scene. The intimate mixture model
is based on the photometric model of Hapke [14], which
considers multiple scattering between different materials at
the particle level [6]. Close et al. [7], [8] applied Hapke’s
average albedo model to solve fully unsupervised nonlinear
unmixing in the case of intimate mixtures. In the multilay-
ered scene, there are multiple interactions among scatters at
different layers, which often happen between vegetation and
soil [1]–[5]. The bilinear mixture model (BMM) considers the
second-order scattering of photons between two distinct mate-
rials and introduces additional virtual endmembers formed
by their product terms into the LMM [3]. The BMM is a
common model of nonlinear unmixing in multilayered scenes,
and its optimization has been studied with different constraints
by several groups [5], [9]–[11]. Chen et al. [16] analyzed
the impact of the collinearity effect [15] of virtual endmem-
bers on bilinear spectral unmixing. When there is a high
correlation between endmembers and second-order scattering
virtual endmembers and when hyperspectral data contain
severe noise, the optimization based on [5] resulted in worse
abundance estimation than linear spectral mixture analysis.
Halimi et al. [11] introduced the generalized bilinear model
(GBM) as an effective means of dealing with the underlying
assumptions in the BMM. The GBM method was applied to
the analysis of small images of synthetic and real hyperspectral
data with three endmembers and showed good results [11],
[12]. When applied to the analysis of larger images in an
unsupervised manner with more endmembers, the optimization
becomes more challenging owing to the collinearity and the
various possibilities of local minima.

Nonnegative matrix factorization (NMF) [17], [18], which
factorizes a nonnegative matrix into two nonnegative matrices,
has recently emerged as a useful method of solving the
LMM-based unmixing problem [19]–[22]. Ding et al. [23]
proposed a new variation in the theme of NMF, i.e., a semi-
nonnegative matrix factorization (semi-NMF) that factorizes a
nonrestricted matrix into a nonrestricted matrix and a nonneg-
ative matrix. In this paper, we present semi-NMF as a novel
optimization method for GBM-based unmixing. We evaluate
it using synthetic datasets and apply it to the analysis of a real
hyperspectral image with 10 endmembers. We also investigate
the effect of endmember extraction on nonlinear unmixing
and visualize the impact of second-order scattering effects on
abundance maps.

The rest of this paper is organized as follows. In Section II,
we describe semi-NMF for GBM-based unmixing.
In Section III, we evaluate the proposed method using
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synthetic datasets, comparing it with conventional methods.
We present the experimental results for real data in Section IV,
and conclude this paper in Section V.

II. GBM-BASED UNMIXING VIA SEMI-NONNEGATIVE

MATRIX FACTORIZATION

A. Generalized Bilinear Model

The BMM takes account of second-order photon interac-
tions between different D endmembers as additional terms in
the LMM, assuming that third or higher order interactions are
negligible [5]. In the BMM, the observed L spectrum of a
single pixel y ∈ R

L×1 is given by

y = Ea +
∑

(i, j )∈G

bi, j ei � e j + n

G = {(i, j)|i < j, i ∈ {1, . . . ,D} , j ∈ {1, . . . ,D}} (1)

where E ∈ R
L×D is the endmember matrix with the i th

column vector {ei }Di=1 ∈ R
L×1 representing the i th endmember

spectrum, a ∈ R
D×1 is the abundance vector, bi, j is the

interaction abundance between the i th and j th endmembers,
� is the Hadamard (element-wise product) operation, and
n ∈ R

L×1 is the additive noise. On the right-hand side, the first
term denotes linear mixing, and the second term represents
a second-order interaction, which is assumed to be a linear
combination of the cross-products of the interacting virtual
endmembers, i.e., the bilinear spectral mixing. The constraint
i < j defined in (1) is based on the commutative property
of the Hadamard operation, i.e., ei � e j = e j � ei . On the
assumption that an endmember spectrum is a representative
of the multi-order self-interaction, the i th pure endmember
spectrum ei = (ei1, . . . , ei L )T ∈ R

L×1 is defined by a power
series of the self-interaction

eik =
∞∑

n=1

αn f n
ik (2)

where eik (k ∈ {1, . . . ,L}) is the kth element of the
endmember spectrum ei , αn is the abundance of nth-order
self-interaction, and fi = ( fi1, . . . , fi L )T ∈ R

L×1 is the
first-order self-interaction spectrum of the i th endmember.
Consequently, bi,i corresponding to the second-order self-
interaction is eliminated in (1) because the second-order self-
interaction term, i.e., n = 2, is inherent in the endmember
matrix E.

From a physical perspective, the GBM introduces the non-
linear mixing coefficient bi, j as bi, j = ci, j ai a j and assumes
the following constraints:

ai ≥ 0 i ∈ {1, . . . , D} and
D∑

i=1

ai = 1 (3)

0 ≤ ci, j ≤ 1

i < j

i ∈ {1, . . . , D} , j ∈ {1, . . . , D} . (4)

When the endmember spectra are known, GBM-based unmix-
ing turns to the optimization of the abundance (a) and the
interaction coefficient (c) under the constraints of (3) and (4).

Halimi et al. [12] proposed three optimization methods
using different algorithms: the Bayesian algorithm using the
Markov-chain Monte Carlo method; the Fan-FCLS algorithm;
and the gradient descent algorithm (GDA). The GDA showed
good results for both synthetic and real hyperspectral datasets.

B. Semi-Nonnegative Matrix Factorization for GBM

In this paper, the new optimization method based on semi-
NMF is introduced to speed up the optimization of a whole
image in matrix form. The observed hyperspectral image can
be reshaped as a matrix form Y ∈ R

L×P , with P representing
the number of pixels. The BMM for the whole image is given
in matrix form by

Y = EA+MB+ N (5)

where A ∈ R
D×P is the abundance matrix with each column

vector {al}Pl=1 ∈ R
D×1 representing the abundance vector at

the lth pixel, M ∈ R
L×D(D−1)/2 is the bilinear endmember

matrix, B ∈ R
D(D−1)/2×P is the interaction abundance matrix

with each column vector {bl}Pl=1 ∈ R
D(D−1)/2×1 representing

the interaction abundance vector at the lth pixel, and N ∈
R

L×P is the noise matrix. GBM-based unmixing becomes the
following minimization with respect to A and B:

minimize ‖Y− EA−MB‖2F (6)

subject to A � 0,

D∑

i=1

(A)il = 1, 0 	 B 	 A∗ (7)

where (A∗)(i, j )l= (A)il (A) j l (l ∈ {1, . . . , P}), the operator
‖·‖F denotes the Frobenius norm, and the symbol 	 denotes
inequality component-wise. By introducing Y1 = Y−MB and
Y2 = Y− EA, (5) is written as

Y1 = EA+ N (8)

Y2 = MB+ N. (9)

Alternately minimizing ‖Y1 − EA‖2F and ‖Y2 −MB‖2F with
respect to A and B, respectively, can be used for the local
optimization of the original problem (6) performed using
an alternating optimization algorithm. Owing to physical
constraints, all the components of E, M, A, and B are
nonnegative. Therefore, the minimization of (6) can be done
using alternative update rules of semi-NMF [23]. Semi-NMF
is a problem that factorizes the nonrestricted matrix X into the
nonrestricted matrix F and the nonnegative matrix G such that
X = FGT [23]. Ding et al. [23] proposed an iterative updating
algorithm that alternatively updates F and G using

F = XG(GT G)
−1

(10)

G ← G·∗
√(

(XT F)
+ +G(FT F)

−)
·/

(
(XT F)

− +G(FT F)
+)

(11)

where ·∗ and ·/ denote multiplication and division element-
wise. (C)+ and (C)− are the positive and negative parts of the
matrix C defined as C+ = (|C| + C)/2, C− = (|C| − C)/2.
Semi-NMF optimization is guaranteed to converge to a local
optimum using alternative updating rules.
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When E is given and M is calculated from E, GBM-based
unmixing is solved using the following update rules for A
and B:

AT ← AT ·∗
√(

(YT
1 E)
+ + AT (ET E)

−)
·/

(
(YT

1 E)
− +AT (ET E)

+)

(12)

BT ← BT ·∗
√(

(YT
2 M)

++BT (MT M)
−)
·/

(
(YT

2 M)
−+BT (MT M)

+)
.

(13)

Since semi-NMF converges to a local optimum, initializa-
tion is critical to the final results. We assume that the
LMM can be an approximation of the BMM. The fully
constrained least-squares (FCLS) method [24], which is a
well-known abundance estimation method based on the LMM,
is used to initialize the abundance matrix A, and the inter-
action abundance matrix B is initialized as δ × A∗ with a
small δ.

For any observed spectrum (y), the linear mixing term is
larger than the bilinear mixing term

Ea −Mb �
D∑

i=1

ai ei −
∑

(i, j )∈G

aia j ei � e j

�
D∑

i=1

ai ei

(
1−

∑
j �=i a j

2

)

=
D∑

i=1

ai ei

(
1+ ai

2

)
� 0. (14)

When the signal-to-noise ratio (SNR) between Ea + Mb
and n is larger than 2, the SNR between Ea and n
is larger than 1. Generally, the SNR of hyperspectral sensors
is much larger than 2; therefore, all components of Y1 can be
assumed to be nonnegative. In this case, the minimizing the
cost function ‖Y1 − EA‖2F can be done by NMF [17], which
factorizes a nonnegative matrix into two nonnegative matrices.
A can converge to a local optimum by the NMF update rule
given by

A← A·∗
(

ET Y1

)
·/

(
ET EA

)
. (15)

If any component of Y1 is negative owing to extreme noise at
the beginning, it should be initialized to zero.

The convergence property based on the update rules
of (12) and (13) or (15) and (13) is proved as follows.
In [23], it is guaranteed that, by fixing E, the residual error
‖Y1 − EA‖2F (‖Y− EA−MB‖2F ) decreases monotonically
under the update rule for A. In the same way, by fixing M, the
residual error ‖Y2 −MB‖2F (‖Y− EA−MB‖2F ) decreases
monotonically under the update rule for B. Therefore,
‖Y− EA−MB‖2

F decreases monotonically under the update
rules (12) and (13). In [18], it is also proved that, when Y1
is nonnegative, ‖Y1 − EA‖2F (‖Y− EA−MB‖2F ) decreases
under the update rule (15). Therefore, ‖Y− EA−MB‖2F
decreases monotonically with the alternative updating of
(15) and (13). The algorithm of GBM-based unmixing using
semi-NMF is as follows.

Algorithm 1 Generalized Bilinear Model-Based Nonlinear
Unmixing Via Semi-NMF

Input: Hyperspectral data Y ∈ R
L×P and endmember matrix

E ∈ R
L×D .

Output: Abundance matrix A ∈ R
D×P and interaction abun-

dance matrix B ∈ R
D(D−1)/2×P.

Step 1: A is initialized using FCLS based on the LMM.
Step 2: A∗ is calculated and B is set as δ × A∗ with a small
δ.
Step 3: A and B are alternatively updated using (12) and (13)
(semi-NMF only) or (15) and (13) (NMF and semi-NMF). If
any element of B exceeds that of A∗, it is replaced with that
of A∗.

To satisfy the abundance sum-to-1constraint, the method
cited from [24] is adopted.

III. EVALUATION OF SYNTHETIC DATA

Synthetic hyperspectral images (20×20 pixel size) are used
to evaluate the unmixing performance of the proposed method,
considering the robustness of the algorithm for the accuracy of
endmember spectra and the collinearity issue. Since bilinear
spectral mixing often occurs between vegetation and soil
[1]–[5], four spectra, i.e., the spectra of two types of plants,
soil, and water in the U. S. Geological Survey spectral library,
are selected as materials of synthetic images. The leaves of
spurge and oak are chosen as vegetation, and the Stonewall
Playa surface is used as soil. The original endmember spectra
are spectrally downsampled with the spectral characteristic
of the Airborne Visible/Infrared Imaging Spectrometer. To
evaluate the robustness of the algorithm for spectral complex-
ity and the collinearity issue, two types of synthetic dataset
with different combinations of endmembers are generated
using three (spurge leaf, soil, and water) and four endmember
spectra, respectively. For each combination of endmembers,
we use three different spectral mixing models, i.e., the LMM
(image 1), the GBM (image 2), and a hybrid of the LMM
and GBM (image 3). The half pixels in the hybrid image are
generated by the LMM and GBM. To obtain synthetic images
without pure pixels, all abundance fractions are generated
uniformly on a simplex with a cutoff threshold fixed at 0.8. For
the GBM, the interaction coefficients are set using uniformly
distributed random values in [0 1]. Gaussian noises are added
to all images, setting SNR to 20, which is generally a noise
condition worse than that for real hyperspectral data. Two
scenarios are used for endmember extraction. In the first
scenario, true endmember spectra are given. In the second
scenario, vertex component analysis (VCA) [25], which is
one of the most common convex-geometry-based endmember
extraction methods that entail a pure-pixel assumption, is used
for endmember extraction.

First, we compare the performances of the proposed two
methods, i.e., the semi-NMF-only optimization and the NMF
and semi-NMF optimization, using synthetic datasets gener-
ated using three endmembers. We adopt two criteria, i.e., the
reconstruction error (RE) of unmixing, and the root mean



YOKOYA et al.: NONLINEAR UNMIXING OF HYPERSPECTRAL DATA 1433

0 200 400 600

3.95

4.00

4.05

4.10
x 10 -3

0 200 400 600
1.1215

1.122

1.1225

1.123

1.1235

1.124
x 10 -2

0 200 400 600

1.12

1.14

1.16

1.18

1.20
x 10 -2

0 200 400 600

1.12

1.13

1.14

1.15

x 10 -2

0 200 400 600
1.9

2.0

2.1

2.2

2.3

2.4

2.5

x 10 -2

0 200 400 600

1.4

1.5

1.6

1.7

x 10 -2

Image 1 Image 2 Image 3

RE

RMSE

1st Scenario

Number of itera ons

0 200 400 600

1.34

1.36

1.38

1.40

1.42
x 10 -2

0 200 400 600

8.86

8.88

8.90

8.92

x 10 -2

Image 1 Image 2 Image 3

RE

RMSE

2nd Scenario

Number of itera ons

Semi-NMF NMF & Semi-NMF

0 200 400 600
1.37

1.38

1.39

1.40

1.41

1.42

1.43
x 10 -2

0 200 400 600
8.41

8.42

8.43

8.44

8.45

8.46

8.47
x 10 -2

0 200 400 600
1.25

1.30

1.35

1.40

1.45

1.50

1.55
x 10 -2

0 200 400 600

7.4

7.5

7.6

7.7

7.8
x 10 -2

Fig. 1. Changes in RE of unmixing and RMSE of abundance with number of iterations.

square error (RMSE) of abundance fractions. The RE of
unmixing is calculated to measure the distance between the
observed (yl) and estimated (̂yl) spectra as

RE =
√√√√ 1

L P

P∑

l=1

‖̂yl − yl‖2. (16)

The RMSE of abundance fractions is the most important
criterion for evaluating unmixing performance, which can be
used to compute the accuracy of estimated abundance maps
using the actual (ai ) and estimated (̂ai ) abundances as

RMSE =
√√√√ 1

DP

D∑

i=1

‖̂ai − ai‖2. (17)

Fig. 1 shows the changes in the RE of unmixing and in the
RMSE of abundance fractions with the number of iterations
for three synthetic images. In the first scenario, the NMF
and semi-NMF optimizations show faster convergence for
images 2 and 3 in the RE of unmixing and smaller RMSEs
of abundance fractions, which monotonically decrease. In the
case of image 1, which is based on the LMM, the RMSE
of abundance fractions increases in both methods because
the FCLS method converges to a global optimum. In the
second scenario, the NMF and semi-NMF optimizations show
faster convergence in the RE of unmixing for all the datasets;
however, the RMSE of abundance fractions increases after
convergence for image 2. This means that overfitting occurs
in the optimization when the estimated endmember spectra
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Fig. 3. (a) Endmember spectra and (b) location of endmembers.

contain errors. Hereafter, we refer to the NMF and semi-NMF
method as semi-NMF. To avoid overfitting, early stoppage is
adopted in the optimization by setting the number of iterations
to 300.

Secondly, semi-NMF is compared with the conventional
methods, i.e., FCLS and GDA, which are based on the
LMM and GBM, respectively. To evaluate the robustness for
spectral complexity and the collinearity issue, we use two
types of synthetic dataset generated with different numbers of
endmembers. Tables I and II show the results of unmixing
performance for the synthetic datasets with three and four
endmembers, respectively. FCLS shows the smallest RMSE
of abundance fractions for image 1 in the first scenario.
In Tables I and II, semi-NMF shows the smallest REs of
unmixing for all the images in both scenarios and the smallest
RMSEs of abundance fractions for images 2 and 3 in the
first scenario. This indicates that the semi-NMF method can
converge to a good local optimum with accurate endmem-
ber spectra. When endmember spectra contain errors in the
second scenario, the RMSE of abundance fractions markedly
increases for all the images, and even the REs of unmixing
are comparable with those in the first scenario. For both
combinations of endmembers (Tables I and II), the difference
in RMSE between the first and second scenarios is much larger
than the difference in RMSE between the linear and bilinear
spectral unmixing methods. This suggests that the accuracy of
endmember spectra has a larger effect on the final abundance
estimation than the second-order scattering effect. When the
number of endmembers increases, as shown in Table II, in the
first scenario, the REMS of abundance fractions increases for

TABLE I

COMPARISON OF UNMIXING PERFORMANCES WITH THREE

ENDMEMBERS (VEGETATION, SOIL, AND WATER) USING

ACTUAL AND ESTIMATED ENDMEMBERS (FIRST AND

SECOND SCENARIO): RES AND SAMS OF UNMIXING

AND RMSES OF ABUNDANCE FRACTIONS

First Scenario

RE (×10−2) RMSE (×10−2)

FCLS GDA Semi-NMF FCLS GDA Semi-NMF

Image 1 1.212 1.212 1.210 0.409 0.410 0.416

Image 2 1.280 1.255 1.216 2.425 2.356 2.169

Image 3 1.253 1.236 1.216 1.691 1.650 1.519

Second Scenario

RE (×10−2) RMSE (×10−2)

FCLS GDA Semi-NMF FCLS GDA Semi-NMF

Image 1 1.417 1.305 1.293 7.480 7.201 7.348

Image 2 1.426 1.378 1.374 8.448 8.388 8.435

Image 3 1.465 1.314 1.298 7.739 7.440 7.408

TABLE II

COMPARISON OF UNMIXING PERFORMANCES WITH FOUR ENDMEMBERS

(TWO VEGETATION, SOIL, AND WATER) USING ACTUAL AND ESTIMATED

ENDMEMBERS (FIRST AND SECOND SCENARIO): RES AND SAMS OF

UNMIXING AND RMSES OF ABUNDANCE FRACTIONS

First Scenario

RE (×10−2) RMSE (×10−2)

FCLS GDA Semi-NMF FCLS GDA Semi-NMF

Image 1 1.449 1.449 1.447 1.985 1.985 2.002

Image 2 1.483 1.494 1.450 6.053 5.902 5.390

Image 3 1.466 1.471 1.452 4.449 4.342 4.035

Second Scenario

RE (×10−2) RMSE (×10−2)

FCLS GDA Semi-NMF FCLS GDA Semi-NMF

Image 1 1.544 1.569 1.480 7.325 7.285 7.258

Image 2 1.499 1.520 1.427 7.627 7.487 7.484

Image 3 1.549 1.571 1.429 8.385 8.187 8.151

all the methods, which may be due to the collinearity issue
caused by the highly correlated spectra between endmembers
and interacting virtual endmembers. Even in this case, with
accurate endmember spectra, GDA and semi-NMF outperform
FCLS for images 2 and 3. This confirms that GBM-based
unmixing has potential for dealing with spectral complexity.
According to the smallest RMSEs of abundance fractions,
semi-NMF is a promising optimization method for GBM-
based nonlinear unmixing.

IV. EXPERIMENT FOR REAL DATA

GBM-based unmixing using semi-NMF is applied to air-
borne hyperspectral data to evaluate the numerical unmix-
ing performance for real data, to examine the impact of
endmember extraction on bilinear spectral unmixing, and to
demonstrate the difference in the abundance map obtained
between the LMM and GBM. The dataset was acquired
using the compact airborne spectrographic imager (CASI-3)
on June 19, 2009. The study area was the agricultural field in
the Motonopporo farm in Hokkaido, Japan, because multiple
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TABLE III

COMPARISON OF RES (×10−3) AND SAMS (IN DEGREE), AND COMPUTATIONAL COSTS (INS)

D = 6 D = 11 D = 16 D = 21

RE SAM Time RE SAM Time RE SAM Time RE SAM Time

FCLS 10.56 2.695 20.5 6.320 1.824 57.4 5.025 1.488 95.2 4.738 1.433 143.5

GDA 10.55 2.692 122.2 6.318 1.823 223.1 5.048 1.479 670.6 4.721 1.431 785.7

Semi-NMF 10.26 2.640 55.4 6.258 1.816 106.6 4.975 1.483 169.7 4.701 1.429 250.4

0
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tree tree (shadow) grass 1 grass 2 grass 3
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×10
-2

(a)

(b)

Fig. 4. (a) Abundance maps and (b) differences of abundance maps with LMM.

scattering is a common phenomenon between vegetation and
soil [1]–[5]. The area consisted of a devastated grassland,
trees, unpaved rural roads, an agricultural field, and an asphalt
road. We selected a 150×150-pixel-size image with 68 spectral
channels over 410–1070 nm and a 1-m ground sampling
distance. The data initially measured as radiance was converted
into reflectance.

The performance of the proposed method is numerically
evaluated by the RE and the spectral angle mapper (SAM)
of unmixing, and the computational time of Matlab imple-
mentations was compared with that of FCLS and GDA. The
CPU used is Intel Core i7 CPU 2.80 GHz, with a memory
capacity of 16 GB. SAM is calculated using the observed (yl )
and estimated (̂yl) spectra as

SAM = 1

P

P∑

l=1

arccos

(
yl · ŷl

‖yl‖ ‖̂yl‖
)

. (18)

RE and SAM are common criteria for evaluating the
performance of the unmixing procedure for real datasets.
By changing the number of endmembers extracted by VCA
and comparing the second-order interaction term and the
residual errors of the GBM, we examined the impact of
endmember extraction on bilinear unmixing. The effects of
the interaction term and the residual errors of unmixing at
a single pixel are calculated by the root-sum-square (RSS)
method. After the endmember extraction, abundance maps and
the impact of bilinear spectral mixing on these abundance
maps are calculated.

Table III shows a comparison of the RE and SAM values,
and the computational cost determined using four differ-
ent numbers of endmembers, i.e., D = 6, 11, 16, and 21.
The Semi-NMF method shows the best performance in terms
of RE and SAM for many different numbers of endmembers.
In addition, the computational time is smaller than for GDA.
In particular, even when the number of endmembers increases,
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the semi-NMF method converges to good local optima at
reasonable computational cost owing to the simple update
rules in matrix form. This result indicates that semi-NMF is
a practical method of solving the optimization of GBM-based
unmixing owing to its convergence performance and simple
implementation.

Fig. 2 shows RSS maps of the second-order interaction term
and unmixing residual errors. As the number of endmembers
increases (6, 11, 16, and 21), the two maps converge. We con-
cluded that 16 endmembers are sufficient. In spite of the large
number of endmembers, the bilinear spectral mixing effect
clearly appears in areas B and C in Fig. 2, i.e., the boundary
between grass and trees, and the narrow path, where there
is a 3-D multilayered structure, which is consistent with the
physical model of GBM-based unmixing. With D= 6, area
A in Fig. 2, corresponding to grass, shows a large bilinear
spectral mixing effect; however, the residual error still remains
large in this area. It significantly decreases after grass is
detected as the endmember at D = 11. This means that
endmember extraction has a larger influence on residual errors
of unmixing than the bilinear mixing effect, which is also
confirmed from the difference between the first and second
scenarios in the simulation of synthetic datasets. Therefore,
to discuss nonlinear spectral mixing, accurate endmember
extraction is necessary.

Since VCA is sensitive to the outlier, it can detect some
endmembers that are only present in very specific regions.
To visualize the abundance map and the bilinear mixing effect,
we manually eliminated such type of specific endmembers and
reprocessed GBM-based unmixing with 10 endmembers, as
shown in Fig. 3(a). In Fig. 3(b), the colored circles indicate the
locations of these endmembers, with each color correspond-
ing to that of the spectrum in Fig. 3(a). The endmembers
are labeled by visual judgment considering the locations of
endmembers and comparing the abundance maps and RGB
color image. Fig. 4(a) and (b) show the abundance maps for
these 10 materials and their differences from the LMM, which
demonstrate the impacts of the second-order interaction on
abundance maps. In some regions, the abundance fractions
changed by more than 2% compared to the LMM because
of the multiple scattering effects. Grass 4 and soil 2 show
relatively large changes from the LMM at their boundary
owing to the second-order scattering interaction, which is con-
sistent with previous research reports on multiple interactions
that often occur between vegetation and soil. This qualitative
result implies that GBM-based unmixing using semi-NMF has
potential for dealing with the spectrally complex BMM in
hyperspectral unmixing.

V. CONCLUSION

In this paper, we presented a novel optimization method
based on semi-NMF for GBM-based nonlinear unmixing.
Semi-NMF enables the optimization of GBM-based unmixing
to process a whole image in matrix form with simple update
rules. The performance of the proposed method is evaluated
using synthetic hyperspectral datasets, considering the robust-
ness for the error of endmember extraction and the collinearity

issue, and compared with the LMM-based method and the
conventional optimization for GBM-based unmixing. With
accurate endmember spectra, GBM-based unmixing showed
robust results for the spectral complexity and collinearity issue.
In particular, the semi-NMF method gave the smallest RMSE
of abundance fractions. The errors of endmember extraction
resulted in RMSEs of abundance fractions being larger than the
difference in RMSE between the LMM and the GBM. There-
fore, accurate endmember extraction is necessary to discuss
nonlinear unmixing. We applied GBM-based unmixing using
semi-NMF to a real airborne hyperspectral image taken over
an agricultural field with many endmembers. The semi-NMF
method could be used to visualize the interaction between
vegetation and soil and its effect on final abundance maps
at reasonable computational cost.
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