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ABSTRACT

In this work, we present a new method that combines fluo-
rescence fingerprint (FF) imaging and spectral unmixing to
visualize microstructures in food. The method is applied to
visualization of three constituents, gluten, starch, and butter,
in two types of pie pastry. It is challenging to discriminate
between starch and butter because both of them can be rep-
resented by similar FFs of low intensities. Two optimization
approaches of FF unmixing that consider qualitative knowl-
edge are presented and validated by comparison to the con-
ventional staining method. Although starch and butter were
represented by very similar FFs, a constrained-least-squares
method with abundance quantization successfully visualized
the distributions of constituents in pie pastry.

Index Terms— Fluorescence fingerprint imaging, spec-
tral unmixing

1. INTRODUCTION

A fluorescence fingerprint (FF), which is also known as an
excitation-emission matrix (EEM), is an alternative represen-
tation of the fluorescence spectra with each matrix element
representing the fluorescence intensity of a given pair of ex-
citation and emission wavelengths [1, 2]. Owing to its large
amount of data, FFs can be used to discriminate between sam-
ples that have similar fluorescence properties, such as wines
made in different regions [3]. Recently, FF imaging has been
proved to be helpful for visualization of internal structures of
foods, which is important for food monitoring [4, 5]. Con-
ventional analytical techniques, such as principle component
analysis (PCA) and spectral angle mapper (SAM), are useful
for extracting information from FF images; however, there is
still much room for advanced analysis to take advantage of
the high dimensionality of FFs.

Hyperspectral imaging is a non-destructive imaging
method that utilizes the intrinsic spectral properties of con-
stituents, and is a common macroscopic analytical tool for
food quality and safety control [6]. Spectral unmixing is
a blind source separation technique actively developed in
remote sensing using hyperspectral imaging [7]. Spectral un-
mixing refers to any process that separates the pixel spectrum

into spectra of distinguishable spectral signatures, which are
called endmembers, and abundance fractions that represent
the percentage of each endmember that is present in the pixel.
Many researchers have studied unmixing based on a linear
spectral mixture model (LSMM), which simplifies the actual
complex physical model and considers the observed spectrum
as a linear combination of spectral signatures of endmembers.
FF imaging is a hyperspectral imaging method in the fluo-
rescence mode. Although several researchers worked on
applying unmixing to fluorescent imaging, they are limited to
the use of the fluorescence spectrum, not the FF [8, 9, 10, 11].

In this work, we present FF unmixing, which decomposes
FF imaging data into endmember FFs and their abundance im-
ages, to non-destructively visualize the distributions of gluten
protein, starch and butter in food. Proteins, starches and fat
make the structure of food, and a visualization method of
these three constituents is expected to have wide spread ap-
plications. Pie pastry is used as samples, since the three con-
stituents are known to be distributed in relatively large clus-
ters. Endmember FFs are extracted by a joint use of manual
selection of the reference FFs and a data-driven approach that
finds vertices of data simplex. We present two abundance es-
timation methods: one approach formulated as a constrained-
least-squares problem, one using a matrix factorization tech-
nique. The effectiveness of FF unmixing is validated by com-
parison to the conventional staining method [12, 13].

2. MATERIALS AND METHODS

We focused on two typical types of pie pastry, puff pastry and
short pastry. Although the constituents of our interests are
gluten, starch, and butter, it was necessary to add the fluores-
cence patterns of ferulic acid and microscope slide that rep-
resents air bubbles in pastry dough, in order to obtain decent
results. Therefore, we aim to decompose the FF of each pixel
into the FFs and abundance fractions of five constituents, i.e.,
gluten, starch, butter, ferulic acid, and microscope slide.

2.1. Image Acquisition

Two types of pastry dough were cut into pieces approxi-
mately 1 cm3, embedded in compound (3% CMC embedding



medium, iTec Science, Ibaraki, Japan) and frozen imme-
diately in the cooling bath of a cold trap (Eyela UT-2000,
Tokyo Rikakikai Co. Ltd, Tokyo, Japan) with hexane as the
cooling medium. When the samples were completely frozen,
the samples were sliced to 10 µm using a cryotome (CM-
1900, Leica) with a Surgipath DH80HS blade (Leica). The
thin slices were mounted on a microscope slide (S-8215 and
S-9901, Matsunami Glass Ind., Ltd., Osaka, Japan) and kept
at -20 ◦C until observation

FF images of two types of pastry dough and fractionated
gluten were acquired with the FF imaging system, using the
excitation and emission wavelengths selected with PCA. The
FF images were acquired in excitation and emission wave-
lengths ranging from 270 to 330 nm and 350 nm to 420 nm,
respectively, at 10 nm intervals.

2.2. Linear Spectral Mixture Model

The LSMM is adopted for its mathematical simplicity and
physical interpretability. The LSMM assumes that an ob-
served FF at a pixel can be expressed as a linear combination
of endmember FFs:

y = Ea+ n. (1)

Here, y ∈ RL×1 is the observed FF reshaped into one di-
mension, E ∈ RL×M is the endmember FF matrix with each
column vector representing an endmember FF when it is re-
shaped into a matrix, a ∈ RM×1 is the abundance vector, and
n ∈ RL×1 is the noise vector. L is the number of combi-
nations of excitation and emission wavelengths and M is the
number of endmembers. When the LSMM is written for a
whole FF image, the equation is expressed in matrix form as

Y = EA+N, (2)

where Y ∈ RL×P is the whole image, A ∈ RM×P is the
abundance matrix, N ∈ RL×P is the noise matrix, and P is
the number of pixels. The FF unmixing problem is to decom-
pose Y into E and A. When the number of endmembers are
known, spectral unmixing is mainly composed of two steps:
endmember extraction and abundance estimation.

2.3. Endmember Extraction

A condition that assumes the existence of pure pixels for all
endmembers is called as pure-pixel assumption. In an area
corresponding to a pure pixel, there is only one endmember.
With this condition, the endmember spectra can be assumed
to locate on the vertices of the data simplex. In this case,
the estimation of endmember spectra is boiled down as the
geometry-based detection of the vertices of the data simplex
in high-dimensional space. Endmember extraction methods
based on the pure-pixel assumption have been actively de-
veloped in remote sensing [14, 15, 16]. The vertex compo-
nent analysis (VCA) algorithm is one of the most well-know

geometry-based endmember extraction methods. VCA itera-
tively projects data samples onto a direction that is orthogo-
nal to the subspace defined by the previously determined end-
members. The extreme point on the projection is detected as
the new endmember spectrum.

Unsupervised endmember extraction methods enable
finding vertices of the data simplex; however, a reference
spectral library is required to determine their physical prop-
erties. We jointly use the reference FFs and VCA to extract
the endmember FFs. First, we prepare the reference FFs.
The reference FF of gluten is obtained from the FF image
of fractionated gluten. Small areas of starch and microscope
slide were manually extracted from each observed FF image.
Those of butter and ferulic acid were extracted from the FF
image of the puff pastry dough owing to their clear textures.
All the FFs of the selected areas were averaged to acquire the
reference FFs of these five endmembers. Since the variances
of FFs of gluten and ferulic acid are large, their endmem-
ber FFs were chosen from similar FFs extracted by VCA.
The cosine similarity is used for similarity measurement.
The endmember matrix can be derived using this supervised
endmember extraction.

2.4. Constrained-Least-Squares Method with Abundance
Quantization

Once the endmember signatures are obtained, the abun-
dances can be estimated by minimizing the residuals in the
LSMM. Therefore, the unmixing problem is formulated as
the constrained-least-squares problem [17]:

minimize 1
2∥y − Ea∥22

subject to a ≽ 0,
∑M

i=1 ai ≤ 1,
(3)

where the vector a is the optimization variable. The inequal-
ity notion for vectors denotes componentwise inequality. The
first constraint is the nonnegativity of abundance fractions and
the second constraint means that the sum of abundance frac-
tions at the pixel is less than unit due to variability of end-
member spectra. This optimization is a quadratic program-
ming problem [18], which is written as

minimize 1
2a

TETEa− yTEa
subject to Ga ≼ h,

(4)

where G = [−I 1M ]T (1M ∈ RM×1), I ∈ RM×M is the
identity matrix, and h =

[
0T
M 1

]T (0M ∈ RM×1).
In this work, we introduce quantization of the abundance

fraction of microscope slide. When the samples were sliced,
small holes were observed in the thin slice, where the micro-
scope slide could be seen through. In this case, the abundance
fraction of microscope slide can be assumed to be 0 or 1. The
penalty term is added to the cost function in (3) as

1

2
∥y − Ea∥22 +

1

2
λ (aslide − U (aslide))

2 , (5)



where aslide is the abundance fraction of microscope slide
and λ is a parameter. U(x) is a step function defined as

U(x) =

{
0 if x ≤ 1

2

1 otherwise.
(6)

This cost function is no longer convex. Depending on the
abundance fraction of microscope slide, the optimization can
be divided into the two cases of quadratic programming: if
aslide ≤ 1

2 ,

minimize 1
2a

T (ETE + λC)a− yTEa
subject to G1a ≼ h1,

(7)

otherwise

minimize 1
2a

T (ETE + λC)a− (yTE + λbT )a
subject to G2a ≼ h2,

(8)

where b ∈ RM×1 has unit for bslide and zero values for the
other components and C = bbT . G1 =

[
GT b

]T , h1 =
[
hT 1/2

]T , G2 =
[
GT − b

]T and h2 =
[
hT − 1/2

]T . In
our implementation, the optimization (4) is firstly solved. Se-
quentially, depending on the condition of aslide, the optimiza-
tion (7) or (8) is solved to obtain the final result. Optimization
methods for quadratic programming, such as active-set and
interior-point methods, can solve (4), (7), and (8) with the
global optimum. We refer to this method as the constrained-
least-squares method with abundance quantization (CLSAQ).

2.5. L1/2 Nonnegative Matrix Factorization

When we consider the nonnegativity of the matrices Y , E,
and A in (2), the unmixing problem can be seen as nonneg-
ative matrix factorization (NMF), which factorizes a nonneg-
ative matrix into two nonnegative matrices [19]. In the last
decade, NMF and its extensions have been intensively stud-
ied in hyperspectral unmixing and proved their effectiveness
without the pure-pixel assumption [20, 21]. NMF was also
applied to fluorescent imaging data [10]. For our problem
setting, very few endmembers can be assumed to be mixed
in a pixel owing to high-spatial-resolution imaging and the
limited number of endmembers. Therefore, as a comparison
method to CLSAQ, we adopt a sparsity constrained NMF that
uses L1/2 sparsity constraint on abundances [22]. L1/2-NMF
formulates the unmixing problem as

minimize 1
2∥Y − EA∥2F + η∥A∥1/2

subject to E ≽ 0, A ≽ 0,
∑M

i=1 ai ≤ 1,
(9)

with variables E and A, where ∥ · ∥F denotes the Frobenius
norm, ∥A∥1/2 is the summation of square roots of all elements
in A and η is the parameter. This optimization is guaranteed
to converge to local optima using the multiplicative update
rules as follows:

E ← E. ∗ Y AT ./EAAT

A← A. ∗ ETY./
(
ETEA+ η

2A
− 1

2

)
,

(10)

Excitation wavelength (nm)

E
m

is
s
io

n
 w

a
ve

le
n

g
th

 (
n

m
)

Freulic acid

 

 

270 280 290 300 310 320 330
350

360

370

380

390

400

410

420

0

100

200

300

400

500

600

700

Excitation wavelength (nm)

E
m

is
s
io

n
 w

a
ve

le
n

g
th

 (
n

m
)

Starch

 

 

270 280 290 300 310 320 330
350

360

370

380

390

400

410

420

0

50

100

150

200

250

Excitation wavelength (nm)

E
m

is
si

o
n

 w
a

v
e

le
n

g
th

 (
n

m
)

Butter

 

 

270 280 290 300 310 320 330
350

360

370

380

390

400

410

420

0

50

100

150

200

250

Excitation wavelength (nm)

E
m

is
si

o
n

 w
a

v
e

le
n

g
th

 (
n

m
)

Gluten

 

 

270 280 290 300 310 320 330
350

360

370

380

390

400

410

420

0

500

1000

1500

2000

Excitation wavelength (nm)

E
m

is
s
io

n
 w

a
v
e

le
n

g
th

 (
n

m
)

Slide glass

 

 

270 280 290 300 310 320 330
350

360

370

380

390

400

410

420

0

50

100

150

200

250

Fig. 1. Endmember FFs of short pastry dough.

where .* and ./ denote elementwise multiplication and divi-
sion, respectively. E and A are initialized using the extracted
endmember FFs and a matrix with constant values, respec-
tively. To satisfy the additivity constraint, we add the black
spectrum to E, and the data matrix Y and the endmember
FF matrix E are augmented by a row of constants defined by
Ỹ =

[
Y T δ1P

]T and Ẽ =
[
ET δ1P

]T , respectively, where
δ controls the impact of the additivity constraint [17].

3. EXPERIMENTAL RESULTS

Fig. 1 shows the endmember FFs used for the short pastry
dough. Gluten and ferulic acid have characteristic fluores-
cence patterns, whereas those of starch and butter are very
similar. Although starch itself is not fluorescent, starch gran-
ules are known to be surrounded by a protein membrane. The
FF of starch is a mixture of the protein FF and the FF of
the microscopy slide which passes through the starch gran-
ule. The microscope slides are not completely fluorescence
free and show weak fluorescence.

Fig. 2 shows the abundance images of gluten, starch,
butter, ferulic acid, and microscope slide obtained by CLSAQ
and L1/2-NMF. The top two rows are the results of the short
pastry dough and the bottom two rows are those of the puff
pastry dough, which shows a band of butter sandwiched be-
tween two layers of wheat dough. As shown in the first
and third rows obtained by CLSAQ, abundances for micro-
scope slide are shown in black (abundance=0) and white
(abundance=1), whereas the other constituents are shown in
continuum values between 0 and 1. Even though the FFs of
starch and butter are similar, there are obvious differences be-
tween their distributions for both pastry dough. Particularly,
in the abundance image of starch for the puff pastry dough,
starch particles are visualized. As shown in the second and
fourth rows obtained by L1/2-NMF, the abundance images of
gluten and ferulic acid are very similar to those of CLSAQ;
however, it is difficult to distinguish those of starch and butter
for the short pastry dough and starch particles are failed to be
visualized for the puff pastry dough. These results indicate
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Fig. 2. Abundance images of gluten, starch, butter, ferulic acid, and microscope slide from left to right columns for short pastry
dough on top two rows and puff pastry dough on bottom two rows.

Fig. 3. (Left) Composite image of the abundance images
of butter (red), starch (green) and gluten (blue) obtained by
CLSAQ. (Right) Stained image of the same sample. Protein
is stained blue and fat is stained orange.

that it is important to place high priority on the reference FFs
carefully selected using human knowledge when endmember
FFs are very similar.

In order to validate the analysis results, the short pastry
was stained. Fig. 3 shows the composite image obtained by
CLSAQ assigning the abundance images of butter, gluten, and
starch to red, blue, and green, respectively, and the stained
image. Large aggregates of gluten can be observed in both
images and the positions of starch granules and fat in the
analyzed image are largely correspondent with those of the
stained image. The FFs of starch and butter were difficult
to distinguish by visual judgmental; however, it was pos-
sible to obtain their abundances accurately. Fluorescence

intensity would be proportional to the volume of these con-
stituents. In the short pastry, the volume ratio calculated
from the weights and specific gravities of the ingredients
is 12.9%:37.8%:49.3% for gluten, starch, and butter ratio.
On the other hand, the ratios calculated from the abun-
dance matrices obtained by CLSAQ and L1/2-NMF were
16.6%:37.6%:45.8% and 30.8%:36.3%:32.9%, respectively.
The ratio obtained by CLSAQ is very close to that calculated
from the ingredients of pie pasty, and seems to support the
accuracy of CLSAQ.

4. CONCLUSION

We have presented spectral unmixing of FF images to visu-
alize distributions of the constituents in pie pastry. The ex-
perimental results showed that the constrained-least-squares
method with abundance quantization successfully visual-
ize the abundance distributions of five endmembers even
though there are very similar FFs. FF unmixing enables
non-destructive visualization of microstructures in biological
imaging, and can be expected to be an alternative tool of
staining.
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