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Abstract—The classification of tree species in forests is an
important task for forest maintenance and management. With the
increase in the spatial resolution of remote sensing imagery, indi-
vidual tree classification is the next target of research area for the
forest inventory. In this work, we propose a methodology involving
the combination of hyperspectral and LiDAR data for individ-
ual tree classification, which can be extended to areas of shadow
caused by the illumination of tree crowns with sunlight. To remove
the influence of shadows in hyperspectral data, an unmixing-based
correction is applied as preprocessing. Spectral features of trees
are obtained by principal component analysis of the hyperspectral
data. The sizes and shapes of individual trees are derived from the
LiDAR data after individual tree-crown delineation. Both spectral
and tree-crown features are combined and input into a support
vector machine classifier pixel by pixel. This procedure is applied
to data taken over Tama Forest Science Garden in Tokyo, Japan,
to classify it into 16 classes of tree species. It is found that both
shadow correction and tree-crown information improve the classi-
fication performance, which is further improved by postprocessing
based on tree-crown information derived from the LiDAR data.
Regarding the classification results in the case of 10% training
data, when using the random sampling of pixels to select train-
ing samples, a classification accuracy of 82% was obtained, while
the use of reference polygons as a more practical means of sample
selection reduced the accuracy to 71%. These values are, respec-
tively, 21.5% and 9% higher than those that are obtained using
hyperspectral data only.

Index Terms—Classification, data fusion, forest, hyperspectral
data, LiDAR.

I. INTRODUCTION

T HE sustainable management of forests is an important
task from the viewpoint of the environment and econ-

omy. Forest inventory, which is the systematic collection of
data and information, such as the tree species, heights, diam-
eters at breast height, site qualities, ages and, so forth, is used
to help sustainable forest ecosystems. Therefore, tree species
classification is an important issue in the study of forest man-
agement and land cover [1]. Periodic field surveys by experts
require a large amount of time and human resources. Since
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remote sensing enables wide-area observation at a single time,
its contribution to tree species classification over forests is
expected [2], [3]. By monitoring forests frequently, remote
sensing is expected to abstract information that will help for-
est management to preserve biodiversity, which is an important
index used to evaluate environmental health. Remote sensing
is also important for estimating biomass and the natural carbon
sink to study regional environments.

In recent years, many researchers have worked on the clas-
sification or identification of tree species using remote sensing
techniques. Since airborne hyperspectral sensors have several
tens of observation bands and high spatial/spectral resolution, a
continuous spectrum can be obtained that enables more detailed
analysis of the specified spectral profiles of individual trees at a
pixel level [4]–[6]. Spectral–spatial approaches, such as the use
of morphological profiles, are effective for the accurate clas-
sification of hyperspectral data using both spectral and spatial
features, which are often concatenated into feature vectors and
classified by a support vector machine (SVM) [7]. In a forest,
the pixel values corresponding to a tree crown are influenced
by the illumination of sunlight and the tree-crown shape, which
make it difficult to extract spatial features of tree crowns only
based on hyperspectral imagery without suitable preprocessing
to take account of variations in the illumination.

Light detection and ranging (LiDAR) is a powerful tool
for obtaining canopy height models (CHMs) by using return
pulses from above the tree crown and terrain surface [8]. Since
LiDAR is an active remote sensing instrument, it is unaffected
by the illumination conditions of sunlight. Using CHMs, indi-
vidual tree heights, crown areas, and shapes are obtained, which
are used in the segmentation of forests into tree crowns [9].
Such information is used to identify species of individual trees
only using LiDAR data [10]. Full-waveform LiDAR records
the complete waveform of a backscattered signal echo, which
is used to reconstruct tree structures, such as the stem vol-
ume and diameter at breast height [11]. Therefore, tree-crown
features, such as the tree size and shape, obtained from LiDAR-
derived CHMs are also expected to be useful in tree species
classification.

In recent years, the fusion of hyperspectral and LiDAR data
for classification has been studied [12]–[19]. Many researchers
use LiDAR data for preprocessing to find trees by threshold-
ing CHMs. The illumination condition is also obtained from
CHMs, and thus the masks of shadow areas are created [14].
Raw height data and pixel-level statistics are used as fea-
tures of tree crowns, which improve the classification accuracy
[15], [16]. Individual tree-crown delineation is effective for
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Fig. 1. (Left) Whole RGB image obtained using hyperspectral data. (Right) Enlarged RGB images of study areas A and B with CHM derived from LiDAR data.

preprocessing and postprocessing in the classification proce-
dure [17]. By treating pixels in a tree crown together, similar
merits to those of spectral–spatial techniques are expected.
Volumetric canopy profiles [18] and structural metrics obtained
from point clouds by waveform LiDAR [19] further improve
the capture of tree-crown information.

In this work, we propose a methodology to classify tree
species by coupling hyperspectral and LiDAR data. After
shadow correction is applied to hyperspectral data to decrease
the common source of intensity variability, spectral features are
obtained by extracting principal components. Tree-crown fea-
tures, such as tree heights, sizes, and shapes, are derived by
tree-crown delineation and shape fitting to CHMs. Spectral and
tree-crown features are fused and then input to the SVM classi-
fier. A crown-preserving smoothing filter based on tree-crown
information is applied as a postprocessing technique to improve
the classification. We apply the procedure to the challenging
tree species classification problem of Japanese complex mixed
forests and show its effectiveness.

II. MATERIALS

A. Study Area

Japan is located in East Asia and consists of subarctic,
temperate, and subtropical climate zones. Therefore, Japanese
forests contain a wide range of tree species. The study area is
Tama Forest Science Garden in the western region of Tokyo
[20], which is managed by the Forestry and Forest Products
Research Institute, Japan. This forest has an area of 56 ha
and includes a special region containing many tree species
found in gardens. Since broadleaf evergreen trees from the
warm temperate zone, deciduous trees from the cool temperate

zone, and conifers from the subarctic zone coexist in the gar-
den, it is suitable for investigating tree species classification in
Japan.

B. Remote Sensing Data

The left image in Fig. 1 is a color image obtained using
hyperspectral data from the 654, 552, and 449 nm bands, cor-
responding to red, green, and blue (RGB), respectively. The
right images in Fig. 1 show enlarged RGB images of study
areas A and B and the respective CHM images derived from
LiDAR data. The data were obtained by airborne sensors on
September 10, 2009, and provided by Japan Space Systems.
Since the data were obtained in early fall, all the trees had
green leaves, making it difficult to use their colors for analysis.
The hyperspectral data were obtained by CASI-3 with 72 bands
covering wavelengths of 400–1050 nm. The ground sampling
distance of the hyperspectral data was 1 m, and the data were
resampled to obtain an orthorectified data cube using a digital
surface model (DSM) derived from LiDAR data. To avoid the
effects of the bidirectional reflectance distribution function, the
data in the target areas were obtained along the nadir path. The
acquired data were processed to obtain radiance data using the
instrumental characteristics and then converted to reflectance
data using fast line-of-sight atmospheric analysis of spectral
hypercubes (FLAASH) software.

The LiDAR data were obtained from LMS-Q560 (Riegel),
which observes the first and last return pulses with a ground
sampling distance of 0.5 m. The CHM used was the differ-
ence between the digital elevation model (DEM) and the DSM,
and was obtained with a sampling distance of 1 m. The CHM
represents the heights of trees excluding terrain effects.
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Fig. 2. Ground reference of 16 major species in the study areas and their average spectra obtained from de-shadowed hyperspectral data.

C. Field Survey Data

A field survey was carried out in this area tree by tree, by
human inspection. Fig. 2 shows the distribution of the ground
reference of 16 major species in the study areas and their
average spectra obtained from de-shadowed hyperspectral data.
The species and the crown shapes of some trees were investi-
gated by experts. The field survey data were composed of the
tree species and a shapefile showing a polygon of the tree crown
for individual trees. The polygon of the tree crown was overlaid
on the remote sensing data to represent the ground reference.
Although there are more than 150 species of trees in this area,
most of them occupy only a few pixels. We chose 16 major
species with sufficient ground reference data for our investiga-
tion. Table I shows the class names and the numbers of trees and
pixels. The study areas comprise typical mixed forest consisting
of conifers and broadleaf trees.

III. METHODOLOGY

The proposed method consists of four parts: 1) shadow
correction of the hyperspectral data; 2) individual tree-crown
delineation from the LiDAR-derived CHM; 3) classification by
an SVM; and 4) postprocessing. Fig. 3 shows the classification
flow for the proposed methodology.

A. Shadow Correction

Shadows are a common source of intensity variability, which
leads to misclassification. A great deal of attention has been

paid to removing shadows from passive optical remote sensing
images. Since the structures of trees are complex owing to
their complicated multilayers, the shadow correction of a forest
is a challenging task. Generally, the shadow correction pro-
cess comprises two steps: 1) detection and 2) de-shadowing.
One common approach is the joint use of matched-filter-based
thresholding for detection and an atmospheric radiative trans-
fer model for de-shadowing [21], [22]. Several parameters
for thresholding and atmospheric conditions must be care-
fully defined in this approach. When a DSM is available, ray
tracing is effective for detecting shadows [14], [23], [24]; how-
ever, it is necessary to identify the area containing exactly the
same objects as those in the shadow area for de-shadowing,
which may be challenging in the case of a forest. We adopt
an unmixing-based approach for shadow correction [25], since
it can be fully automated and can effectively improve the clas-
sification accuracy without requiring the blue-skewed skylight
illumination of the shadow.

First, the shadow is assumed to be a “black” (zero
reflectance) endmember. Next, endmember spectra obtained
by vertex component analysis (VCA) [26] are assumed to
be unshadowed. VCA is a data-driven approach with a given
number of endmembers, and the number of endmembers in this
study is determined to be 15 by using HySime [27]. Abundance
fractions are estimated using the fully constrained least-squares
(FCLS) method satisfying sum-to-one and nonnegativity
constraints [28]. The reflectance spectra are approximately
de-shadowed by dividing the spectra by one minus the shadow
abundance.
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TABLE I
CLASS NAMES OF MAJOR TREE SPECIES WITH THE NUMBERS OF TREES AND PIXELS OF REFERENCE DATA

Fig. 3. Concept of data fusion and data processing flow.

B. Individual Tree-Crown Delineation

Individual tree-crown delineation is an important technique
for extracting information from forests. Many researchers
have investigated the use of individual tree-crown delineation
methods for passive remote sensing applications, such as region
growing methods, valley following methods, and so forth [29]–
[36]. In this study, we use a region growing method to obtain
the LiDAR-derived CHM [37], [38]. First, to reduce noise, we
apply a Gaussian smoothing filter with a kernel size of three
pixels to the CHM, which is selected so as not to miss small

trees. Then, we find local maxima in the smoothed image,
which include nontree objects. To remove these objects, the
local maxima whose normalized difference vegetation indices
(NDVIs) are lower than 0.5 or whose heights are less than 1 m
are excluded [14], [19]. The remaining objects correspond to
the tops of trees. Regions corresponding to tree crowns are
grown from the local maxima. If neighboring pixels satisfy cer-
tain conditions, a region is formed from these pixels and the
neighboring pixels become the next starting pixels. The condi-
tions are set that the height of each neighboring pixel is less
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than that of the starting pixel and greater than 1 m, so that
regions do not reach the ground. This growth step is repeated
until there are no more starting pixels. After the growth step,
each region is adjusted so that it is star-shaped to exclude the
pixels that are located outside the region centered at the tree-
top [37], [38]. Finally, overlapping regions are assigned to the
region containing the nearest local maximum in the projected
two-dimensional coordinates.

C. SVM Classification

We adopt the SVM classifier with the radial basis func-
tion (RBF) kernel to classify the pixel level using spectral and
tree-crown information as input features. SVMs are widely
acknowledged to be effective algorithms for pixel-level clas-
sification using hyperspectral data [39], including tree species
classification [15]–[17]. The number of spectral bands of the
hyperspectral data is 72, but the latent dimension is generally
lower. Therefore, the principal components of the de-shadowed
hyperspectral data are used as the spectral features; we input
15 principal components that represent more than 99.5% of the
variance contained in the data. Then, the crown height, size, and
curvature are used as tree-crown features. The height and size
are defined by the highest value in the CHM and the number of
pixels in each crown, respectively. The curvature is estimated
by the fitting function

z = H − arc, (1)

where we assume axial symmetry and use cylindrical coordi-
nates (r, z). H denotes the height of the tree, and a and c
are estimated values. The Levenberg–Marquardt algorithm is
used to solve the nonlinear least-squares curve-fitting problem.
If a pixel is not included in any of the crowns, the height is
the pixel’s own value, the size is 1, and the curvature is 0.
The optimal parameter of the RBF kernel is defined by cross-
validation [40]. We coded this method using MATLAB with
LIBSVM, which is a library of SVMs that supports multiclass
classification, using the one-against-one method [41].

D. Postprocessing

Although we use tree-crown information derived from the
mapping of LiDAR data as the input feature, the result of pixel-
level classification includes salt-and-pepper noise owing to the
spectral variability in each crown. Postprocessing in the spatial
domain is effective for improving the classification outcome
[42]. A majority voting procedure for the pixels in each tree
crown is a common postprocessing technique when a raster-
ized CHM is available [17]; however, the modification entirely
depends on the accuracy of individual tree-crown delineation.
The use of a smoothing filter is a popular postprocessing tech-
nique to obtain better classification results. Here, we propose
a crown-preserving smoothing filter inspired by bilateral filters
[43], [44].

The class label at each pixel in an image is replaced by a
weighted vote of the class from neighboring pixels with the
aim of reducing the salt-and-pepper noise due to misclassi-
fication while preserving the crown edges. This weight can

be based on a Gaussian distribution defined by the Euclidean
distance between pixels and crown segments instead of radio-
metric differences. If a filtered pixel belongs to the same crown
as neighboring pixels, the weights of all these pixels are one;
otherwise, they are smaller than one. Since the classification
results are categorical values (1, . . . ,K), we reclassify the pixel
into the class in which the weighted voting score is highest. This
procedure is formulated as

f̂(i, j) = argmax
k∈K

w∑
n=−w

w∑
m=−w

exp

(
−m2 + n2

2σ2

)
I(k)P (m,n)

I (k) =

{
1, iff(i+m, j + n) = k

0, otherwise

P (m,n) =

{
1, if p(i, j) = p(i+m, j + n)>0

α(0 ≤ α ≤ 1), otherwise

(2)

where f is the class label obtained by the pixel-level classifica-
tion and p is the index of the crown. If a pixel does not belong
to any crown, then p = 0. The parameter α controls the consid-
eration of crown segments, i.e., α → 0 means that the weight
is calculated considering only the pixels in a crown, whereas
α → 1 implies no consideration of the crowns. Therefore, the
proposed filter with the parameters w → ∞, σ → ∞, and α →
0 is equivalent to majority voting. α is set to 0.5 to assign mod-
erate importance to consider crown segments. σ is defined by
setting the full width at half maximum of the Gaussian distri-
bution which is equal to w. The window of the proposed filter
is set to the average size of tree crowns obtained by individual
tree-crown delineation, which is 11× 11 pixels in this study.

IV. RESULTS AND DISCUSSION

A. Shadow Correction and Crown Delineation

Fig. 4(a) and (b) shows the de-shadowed image and the
shadow map in study area A obtained by unmixing-based
shadow correction, respectively. The southeast side of the trees,
which is illuminated by sunshine, is bright, whereas the north-
west side is darker, indicating that the amount of shadow is
larger. Note that the changes in illumination resulting from the
use of the DSM are also corrected. The RGB image in Fig. 4(a)
shows that the shadow effect is corrected for most shadows,
which appear as flat patterns in individual tree crowns owing
to shadow correction, showing that a better reflectance image is
obtained than that in Fig. 1. However, the correction of shadows
on roads and houses is not satisfactory, although they are out-
side the target area in this study. The present shadow correction
method does not take account of spectral dependence, which
does not represent the actual situation and leads to the spectral
distortion of roads and houses. Furthermore, because most of
the pixels are located in the forest area, the regions of roads and
houses are not selected as endmembers in the unmixing pro-
cess. Further improvement in shadow correction by using ray
tracing will lead to better restoration of the spectral profile of
reflectance.

After applying a smoothing filter to the original CHM, the
local maxima of the CHM are found and then individual tree
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Fig. 4. (a) RGB image of de-shadowed hyperspectral data; (b) shadow map; and (c) results of individual tree-crown delineation overlaid on CHM with (d) ground
reference in study area A.

crowns are selected using the thresholds of CHM > 1 m and
NDVI > 0.5. Fig. 4(c) and (d) shows the result of individual
tree-crown delineation and its ground reference in study area A,
both overlaid on the CHM, respectively. The red dots represent
the tops of trees that correspond to local maxima. It is found that
the local maxima corresponding to houses in the upper region of
the figures are excluded by this procedure. By comparison with
the ground reference data, several problems in the extraction of
individual tree crowns are found. Small trees with a high den-
sity located in the southwest area are not extracted. Moreover,
large trees have several local maxima in the tree crown, which
originate from the region growing method, resulting in a single
tree being separated into several small tree crowns. These prob-
lems are related to the smoothing process and further improve-
ments are needed in adaptive data processing. Furthermore,
small trees under a tall tree are not distinguished because their
local maxima are not found. Although waveform LiDAR can
solve this problem [9], it is difficult to distinguish a layered
structure using the proposed method.

B. Tree-Crown Classification

We applied the SVM classifier to the input features obtained
by the proposed method and compared the classification results
with those obtained with and without shadow correction and
the use of tree-crown information. Since the number of trees is
limited for each tree species in the ground reference, e.g., less

than 15 for 9 of the species, it is very challenging to obtain tree-
crown features via treewise sampling using reference polygons.
In this work, we first adopted the random sampling of pixels
to select training samples, assuming that almost all the tree-
crown variations are included in the training set. The training
set size is given as a percentage of the entire ground reference
and the remaining reference pixels were used for validation in
each trial. Fig. 5 shows the classification maps and the overall
accuracy (OA) of one trial when the training set size is 10%.
The accuracy of the classification map obtained by the pro-
posed method is greater than those of the maps obtained using
spectral features only, de-shadowed spectral features only, and
spectral and tree-crown features. In study area A, owing to
shadow correction, we can see an improvement in the classi-
fication results in the central area and in the area of Koyama’s
spruce in the northeast. Furthermore, the salt-and-pepper noise
is mitigated by the proposed method by using the tree-crown
features. Table II shows the confusion matrix of the proposed
method along with the producer’s accuracy (PA) and user’s
accuracy (UA) for all classes. The PAs for Japanese cypress
and cedars are reasonably high owing to the use of a large num-
ber of training samples covering a wide range of within-class
variability; however, this leads to the misclassification of pixels
belonging to other classes, which is indicated by their relatively
low PAs.

Fig. 6 shows the PA of each class for the four methods, which
is obtained by averaging the results of 10 trials. The proposed
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Fig. 5. Classification map of (a) ground reference and classification maps obtained using; (b) de-shadowed spectral and tree-crown features; (c) spectral and tree-
crown features, (d) de-shadowed spectral features only; and (e) spectral features only. Classification maps after (f) majority voting and (g) applying the proposed
filter to the map in (b).

method is more accurate than the other methods for many of
the classes. In particular, the joint use of the tree-crown fea-
tures derived from the CHM improves the results for California
incense cedars, Loblolly pines, Koyama’s spruces, and Oriental
raisin trees, whereas those obtained using only spectral fea-
tures show lower accuracies. The overall accuracy is shown in
Fig. 7(a) for the six methods with training set sizes of 1% to
30% to examine the effects of the use of shadow correction,
tree-crown features, and feature extraction from the CHM in
addition to shadow correction. For each size of the training set,
the average accuracy of 10 trials is plotted. When the train-
ing set size is larger than 10%, shadow correction and the
use of tree-crown features increase the accuracy by 2.5% and
12%, respectively. These results indicate that shadow correc-
tion based on unmixing has a positive impact on tree species
classification, and that the tree-crown features are effective for
improving the pixel-level classification, which is difficult to
discriminate using only spectral features.

Fig. 7(a) also shows a comparison of the classification results
obtained by individual tree-crown delineation of the ground

reference collected by experts, the region growing image pro-
cessing used in this study and the original CHM as well as the
results obtained without the use of the CHM to demonstrate the
impact of feature extraction using the CHM in addition to the
de-shadowed spectral features. The proposed method clearly
outperforms the method using the original pixel values of the
CHM. The use of the ground reference obtained by individual
tree-crown delineation increases the accuracy by 4% compared
with that of the proposed method, which implies that better
individual tree-crown delineation may improve classification
results.

C. Postprocessing

Fig. 5(f) and (g), respectively, shows the postprocessed maps
obtained by majority voting and using the proposed filter with
10% of the ground reference as training samples. The proposed
filter can smooth results while preserving smaller structures
more effectively than majority voting. Fig. 7(b) shows the
overall accuracy of the classification results obtained with
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TABLE II
CONFUSION MATRIX

postprocessing. The proposed filter improves the overall accu-
racy by 7%, whereas majority voting increases the accuracy
by 1%. Therefore, the proposed methodology increases the
accuracy by a total of 21.5% when using 10% training data.
Although the results obtained by postprocessing depend on the
delineation, the proposed filter can preserve small structures
even if the delineation is incomplete. For example, in the west
part of study area A in Fig. 5(f), the majority voting misclas-
sified a small area of Japanese bigleaf magnolias surrounded
by Japanese cedars into the latter because the size of indi-
vidual tree crowns of the latter species was overestimated. In
contrast, the proposed method correctly modified class labels
of pixels in this area because the number of pixels classi-
fied as Japanese bigleaf magnolias in each delineated crown is
comparable to the number classified as Japanese cedars. The
result shows that the proposed crown-preserving smoothing fil-
ter has the potential to moderately improve classification results
by considering delineated crowns even though they include
errors.

D. Accuracy Assessment Using Reference Polygons

When the validation samples are allowed to be in the same
polygons (i.e., trees in this study) as the training samples,
the classification accuracy can be overestimated owing to the

strong correlation between the training and validation data
[45]. To perform a more practical assessment, we conducted
experiments involving treewise sampling by separating the
ground reference data tree by tree with a ratio of four to one
between the training and validation data. The training set was
randomly sampled on a pixel basis and its size is given as a per-
centage of the separated training data. Fig. 8 shows the overall
accuracy obtained with this validation scenario. In Fig. 8(a), the
relationship between the six methods is similar to that shown in
Fig. 7(a) and the proposed method gives the best result with a
3%–4% increase in the accuracy compared with that obtained
using spectral features only. However, the overall accuracy for
all the methods is lower than that in Fig. 7(a) obtained using
pixel-based random sampling for accuracy assessment. This
implies that sufficient training data are required to include the
within-class variation of tree-crown features for each class to
improve the classification performance of the proposed method.
As shown in Fig. 8(b), the proposed filter increases the accu-
racy by 5%, whereas majority voting reduces the accuracy. Our
approach increases the accuracy by a total of approximately
9%, which proves the efficacy of the proposed methodology for
practical assessment. This work shows that hyperspectral data
with tree-crown features are effective for tree species classifica-
tion in Japanese forests, in which conifers and broadleaf trees
result in complex biodiversity.
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Fig. 6. PA of 16 major tree species.

Fig. 7. Overall accuracy of tree species classification. (a) Comparison of six methods to examine effects of the use of shadow correction, tree-crown features, and
feature extraction from CHM in addition to shadow correction. (b) Effects of postprocessing.

V. CONCLUSION

We presented a methodology to classify tree species using
hyperspectral data and a LiDAR-derived CHM. Shadow cor-
rection is applied to hyperspectral data, and information on

the tree size and shape is obtained after individual tree delin-
eation of the CHM. The SVM classifier is used for pixel-level
classification, which is followed by postprocessing using a
crown-preserving smoothing filter. The proposed method was
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Fig. 8. Overall accuracy of tree species classification using reference polygons. (a) Comparison of six methods to examine effects of the use of shadow correction,
tree-crown features, and feature extraction from CHM in addition to shadow correction. (b) Effects of postprocessing.

applied to a dataset taken over Tama Forest Science Garden
in Tokyo, Japan, to classify the data into 16 classes. Both
shadow correction and the use of tree-crown features derived
from the CHM markedly improved the classification accuracy.
In particular, individual tree-crown delineation, which is also
used in the postprocessing, made a major contribution to the
accurate classification of tree species in the complex mixed
forest, showing the importance of LiDAR data. Our results
indicate that the fusion of remote sensing data will be useful
for forest management in Japan, one-third of which is covered
with forests. This methodology can be extended to very high-
resolution imagery by incorporating it in a DSM derived from
stereovision, which provides detailed tree-crown information.
Our future work includes transfer learning for tree species
classification considering more practical conditions.
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