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ABSTRACT

This paper presents a new method for unsupervised detec-
tion of multiple changes using time-serires hyperspectral data.
The proposed method is based on fractional-order Darwinian
particle swarm optimization (FODPSO) segmentation. The
proposed method is applied to monitor land-cover changes
following the Fukushima Daiichi nuclear disaster using mul-
titemporal Hyperion images. Experimental results indicate
that the integration of segmentation and a time-series of hy-
perspectral images has great potential for unsupervised detec-
tion of multiple changes.

Index Terms— FODPSO-based segmentation, unsuper-
vised change detection, multiple changes, land-cover moni-
toring, time-series analysis.

1. INTRODUCTION

Unsupervised change detection using multitemporal hyper-
spectral data has received great attention in the last decade
since ground reference is not available in many practical cases
of change detection. In particular, the detection of multiple
changes is of great interest to utilize rich spectral informa-
tion in hyperspectral data. One of the major approaches is
based on linear transformation, such as canonical correlation
analysis (CCA) [1] and principal component analysis (PCA)
[2]. Multivariate alteration detection (MAD) analyzes differ-
ences between CCA variates and it has been successfully in-
vestigated in a wide range of applications using multitemporal
spectral images. Change vector analysis was also commonly
considered in various applications using multispectral images
[3] and it has been extended to detection of multiple changes
for multitemporal hyperspectral images [4].

Image segmentation has been extensively studied owing
to its meaningful image representation, which enables object-
based analysis. Segmentation has been applied to change de-
tection using high-resolution remote sensing images in [5].
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However, to the best of the authors’ knowledge, very few pub-
lications are available in the literature in which segmentation
is applied for unsupervised detection of multiple changes us-
ing time-series hyperspectral data.

Among different segmentation approaches, thresholding-
based techniques have gained attention in computer vision
and remote sensing [6]. One common way to select opti-
mal thresholds is the exhaustive Otsu criterion [7]. However,
this approach is computationally expensive since for finding
n − 1 optimal thresholds, it demands to evaluate its corre-
sponding fitness n(L− n+ 1)n−1 times [8]. For the sake of
simplicity, the task of determining n − 1 optimal thresholds
for n-level image thresholding can be formulated as a mul-
tidimensional optimization problem. Recently, an extension
of particle swarm optimization (PSO) was proposed, which
considers two modifications: (1) fractional calculus to con-
trol the convergence rate of the algorithm [9, 6], and (2) mul-
tiple swarms of test solutions in which each swarm moves
just like an ordinary PSO with a few punishment and reward
rules. The FODPSO was successfully compared with PSO
families for some benchmark mathematical tests in [9] and
for thresholding-based segmentation in [6].

In this paper, we present a new method for unsupervised
detection of multiple changes based on FODPSO-based seg-
mentation using a set of time-series hyperspectral data. The
proposed method is applied for the detection of land-cover
changes following the Fukushima Daiichi nuclear disaster us-
ing four temporal Hyperion images. The contributions of this
work are twofold: 1) FODPSO-based segmentation is applied
for change detection for the first time in the remote sensing
community; and 2) the potential of combining segmentation
and a time-series of hyperspectral images for land-cover mon-
itoring is validated via a case study.

The rest of the paper is organized as follows: Section 2
describes materials used in this study. Section 3 is devoted to
methodology. Section 4 presents experimental results. Sec-
tion 5 wraps up the paper by providing the main concluding
remarks.
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Fig. 1: (Left) Location of the study area and (right) color com-
posite of Hyperion data taken on April 29, 2012.

2. MATERIALS

2.1. Study Area

The study area is on the Fukushima Daiichi Nuclear Power
Plant (37◦25′16′′, 141◦1′58′′), Fukushima, Japan, and its ad-
jacent areas (Fig. 1). The Great East Japan Earthquake and
the tsunami damaged the power plant, resulting in meltdowns
and the leakage of radioactive materials. Since the disaster,
visiting on site is forbidden and storage tanks have been built
to store polluted water. Many of the abandoned areas have
been covered by weeds.

2.2. Data and Preprocessing

The data set is composed of four temporal Hyperion images
acquired over the study area on April 29, 2012, May 6, 2013,
May 25, 2014, and May 2, 2015 [10]. All the images were
first co-registered using geocoordinate information and fur-
ther registered using phase-correlation-based image matching
if a misregistration of more than one pixel is detected. Image
registration was performed only by shifting the whole image
at a pixel scale to avoid interpolation while keeping the same
spatial resolution. We used 156 bands (bands 8–57, 79–117,
135–165, 183–185, 188–220) after removing bands that ei-
ther include only zero values or influenced by strong water
vapor absorption. ATCOR was used for atmospheric correc-
tion [11]. Atmospheric normalization (relative process) was
further performed to mitigate residuals of non-optimal atmo-
spheric correction. We adopted a pseudo-invariant-feature-
based method, which corrects images using pixels whose
spectral reflectance is consistent over time. Color composite
images of the data set after atmospheric normalization are
shown in the first row of Fig. 3.
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Fig. 2: Flowchart of the proposed method.

3. METHODOLOGY

3.1. Change Detection via Segmentation

The proposed method consists of three parts: 1) dimensional-
ity reduction; 2) segmentation; and 3) multiple change detec-
tion. Fig. 2 shows the flowchart of the proposed methodology,
which can be briefly explained as follows.

1. First multiset canonical correlation analysis (M-CCA)
[12] is performed on a set of time-series hyperspectral
data. Lower-order canonical variates, which represent
more than 99% of the variance contained in the input
data, are used for further processing assuming that they
can explain major variations of the surface. Root mean
square errors (RMSEs) between a master image (e.g.,
the first temporal image) and the others are calculated
using these canonical variables to obtain the degree of
changes.

2. FODPSO-based segmentation is performed on both a
set of M-CCA images and that of RMSE maps to ob-
tain segmentation maps and binary change detection
maps, respectively. M-CCA images of each order or
RMSE maps are spatially stacked before performing
segmentation. The level of segmentation for the M-
CCA images can be defined by taking into account
prior knowledge about an approximate number of land-
cover classes in the study area. The level of segmenta-
tion for the RMSE maps is set to two to conduct binary
change detection.

3. Multiple changes with various degrees of changes are
detected by generating the difference of segmentation
between the master image and the others. They are in-
tegrated with the binary change detection maps and fi-



nally multiple change detection maps are obtained as
the output.

More details of FODPSO-based segmentation, which forms
the basis for the proposed method, are provided in the follow-
ing section.

3.2. FODPSO-based Segmentation

As suggested in [6], the simplest and computationally most
efficient fitness function to define optimal thresholds in
thresholding-based segmentation approaches is the one that
maximizes the between-class variance. In order to find op-
timal thresholds tCoj , the following fitness function can be
formulated:

ϕCo =
max σ2

BCo (t
Co
j )

. 1 < tCo1 < . . . < tCon−1 < L
Co={R,G,B}

(1)
where L is the intensity level in each RGB component of the
input image. These levels are in the range {0, 1, 2, . . . , L-
1}. For example, the number of intensity levels L for an 8-bit
image is between 0 and 255. Co represents the component
of the image. Here, we discuss the the approach for an RGB
image but it can be simply generalized to high dimensional
data.

FODPSO was proposed in [6] for image segmentation to
address the main shortcoming of a simple PSO (i.e., the stag-
nation of particles around sub-optimal solutions). In more
detail, the following modifications have been taken into ac-
count:

1. FODPSO is composed of many simultaneous parallel
PSO on the same test problem and considers a simple
natural selection mechanism. When a search tends to a
sub-optimal solution, the search in that area is simply
discarded and another area is searched instead. For
more information regarding how these rewards and
punishments can be applied, please see [6, 8, 13].

2. Fractional calculus is used to control the convergence
rate of the algorithm. This method has been further in-
vestigated for gray scale and hyperspectral image seg-
mentation and feature selection in [6, 14] and [15], re-
spectively. The main advantage of fractional calculus
is that while an integer-order derivative just implies a
finite series, the fractional-order derivative requires an
infinite number of terms. Therefore, integer deriva-
tives are considered as “local” operators, while frac-
tional derivatives have, implicitly, a “memory” of all
past events, which is useful to control the dynamic of
each swarm.

In order to mathematically derive the FODPSO, in each
step t, the fitness value (i.e., Eq. (1)) is estimated. To model
the swarm, each particle n flies in a multidimensional search

space considering the position (xn[t]), and velocity (vn[t]),
which are highly dependent on local best (x̆n[t]) and global
best (ğn[t]) information as follows:

vsn[t+ 1] = (2)
wsn[t+ 1] + ρ1r1(ğsn[t]− xsn[t]) + ρ2r2(x̆sn[t]− xsn[t]),

wsn[t+ 1] = (3)

αvsn[t] +
1

2
α(1− α)vsn[t− 1] +

1

6
α(1− α)(2− α)vsn[t− 2]

+
1

24
α(1− α)(2− α)(3− α)vsn[t− 3].

The superscript ‘s’ shows the number of each swarm. The
coefficients ρ1 and ρ2 control the inertial influence of the
global best and the local best, respectively. In general, ρ1
and ρ2 are constant integer values, which represent “cogni-
tive” and “social” behavior of each particle with ρ1 + ρ2 < 2
[16]. The parameters r1 and r2 are random vectors in which
each unit generally is a uniform random number between 0
and 1. These random vectors are considered to increase the
randomness behavior of each particle to increase the diversity
of the swarm in order to avoid getting trapped in local op-
timum. The fractional coefficient α can be considered as a
weight to control the influence of past events for determining
a new velocity, 0 < α < 1 [6]. A small α causes the parti-
cles ignore their previous activities. In this way, the system
dynamics will be ignored and become susceptible to get stuck
in a local solution (i.e., exploitation behavior). In contrast, a
large value of α forces the particles to have a more diversi-
fied behavior, which allows exploration of new solutions and
improves the long-term performance (i.e., exploration behav-
ior). However, if the exploration level is too high, then the
algorithm may take longer to find the global solution. Based
on [16], a good α value can be traced in the range of 0.6 to
0.8. In this work, this value is set to 0.65.

4. EXPERIMENTAL RESULTS

Fig. 3 shows the experimental results obtained by our method
using the four Hyperion images. Color composites of re-
flectance data, M-CCA variates, FODPSO-based segmenta-
tion, and final change detection maps are shown in rows from
top to bottom of Fig. 3(a). M-CCA images are correlated
each other compared to those of reflectance data as shown
in the second row of Fig. 3(a). This implies that M-CCA
successfully extracts surface features as the low-order canon-
ical variates by exploring common spatial patterns included
in all the multitemporal images. Residual signals that appear
in a specific temporal image due to various atmospheric con-
ditions can be excluded from the low-order canonical vari-
ates, which can be seen from the images taken on May 6,
2013. Consistent segmentation results were obtained among
the multitemporal images by performing thresholding-based



Fig. 3: (a) Color composites of reflectance data, M-CCA, FODPSO segmentation, and detected changes from top to bottom
rows obtained from four temporal Hyperion data. (b) Enlarged images of change detection maps at areas A and B in (a) and
corresponding high-resolution images from Google Earth (Google, DigitalGlobe).

segmentation to the spatially stacked M-CCA images. Owing
to this property, it is easy to discriminate multiple changes by
subtracting segmentation results.

In the fourth row of Fig. 3(a), multiple changes are clearly
shown in different colors. For example, light green pixels
around the power plant indicate changes from vegetation to
man-made objects, and hot pink pixels in the Northeast cor-
respond to changes from soil to vegetation due to the increase
of weeds. Fig. 3(b) shows the enlarged images of change
detection maps at areas A and B in Fig. 3(a) and their corre-
sponding high-resolution images obtained from Google Earth
(Google, DigitalGlobe). These high-resolution images were
taken on January 31, 2012, March 12, 2013, March 24, 2014,
and June 1, 2015, which are the closest acquisition dates with
those of the Hyperion images. In the area A, it can be seen
that deforestation and construction of man-made objects are
clearly detected by the proposed method. The area B includes
a schoolyard, where bags filled with radioactive waste from
decontamination efforts were started to be temporarily stored
in 2015. This change is also detected by the proposed method.

5. CONCLUSION

In this paper, we presented a new method for unsupervised
detection of multiple changes for land-cover monitoring using
time-series hyperspectral data. In this paper, FODPSO-based

segmentation was proposed to use for unsupervised change
detection. The potential of our method was validated via
a case study that analyzes land-cover changes following the
Fukushima Daiichi nuclear disaster using four temporal Hy-
perion images. Experimental results showed that the pre-
sented method is capable of detecting multiple changes, such
as deforestation, construction of man-made objects, and in-
creasing weeds in the considered study area. Our future re-
search includes numerical validation and an extension of the
method to handle multisensor time-series data.
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[2] V. Ortiz-Rivera, M. Vélez-Reyes, and B. Roysam,
“Change detection in hyperspectral imagery using tem-
poral principal components,” in Algorithms Technolo-
gies for Multispectral, Hyperspectral, and Ultraspectral
Imagery XII, 2006, vol. 6233.

[3] W. A. Malila, “Change vector analysis: An approach
for detecting forest changes with landsat,” in 6th Annu.
Symp. Mach. Process. Remotely Sensed Data, 1980.



[4] S. Liu, L. Bruzzone, F. Bovolo, M. Zanetti, and P. Du,
“Sequential spectral change vector analysis for itera-
tively discovering and detecting multiple changes in hy-
perspectral images,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 8, pp. 4363–4378, August 2015.

[5] L. Wu, Z. Zhang, Y. Wang, and Q. Liu, “A segmenta-
tion based change detection method for high resolution
remote sensing image,” Pattern Recognition, vol. 483,
pp. 314–324, 2014.

[6] P. Ghamisi, M. S. Couceiro, J. A. Benediktsson, and
N. M. F. Ferreira, “An efficient method for segmen-
tation of images based on fractional calculus and natu-
ral selection,” Expert Syst. Appl., vol. 39, no. 16, pp.
12407–12417, 2012.

[7] N. Otsu, “A threshold selection method from gray-level
histogram,” IEEE Trans. Syst. Man Cyber., vol. 9, pp.
62–66, 1979.

[8] M. S. Couceiro and P. Ghamisi, Fractional Order Dar-
winian Particle Swarm Optimization: Applications and
Evaluation of an Evolutionary Algorithm, Springer,
Londen, 2015.

[9] M. S. Couceiro, R. P. Rocha, N. M. F. Ferreira, and
J. A. T. Machado, “Introducing the fractional order Dar-
winian PSO,” Sig., Image and Vid. Process., vol. 102,
no. 1, pp. 8–16, 2007.

[10] N. Yokoya and X. X. Zhu, “Graph regularized coupled
spectral unmixing for change detection,” in 7th WHIS-
PERS, 2015.
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