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Abstract—Landscape visual quality is an important factor asso-
ciated with daily experiences and influences our quality of life. In
this work, the authors present a method of fusing airborne hyper-
spectral andmapping light detection and ranging (LiDAR) data for
landscape visual quality assessment. From the fused hyperspectral
andLiDARdata, classification and depth images at any location can
be obtained, enabling physical features such as land-cover proper-
ties and openness to be quantified. The relationship between physi-
cal features and human landscape preferences is learned using least
absolute shrinkage and selection operator (LASSO) regression. The
proposed method is applied to the hyperspectral and LiDAR
datasets provided for the 2013 IEEE GRSS Data Fusion Contest.
The results showed that the proposedmethod successfully learned a
human perception model that enables the prediction of landscape
visual quality at any viewpoint for a given demographic used for
training. This work is expected to contribute to automatic landscape
assessment and optimal spatial planning using remote sensing data.

Index Terms—Hyperspectral data, landscape visual quality, least
absolute shrinkage and selection operator (LASSO) regression,
light detection and ranging (LiDAR) data, multisensor classifi-
cation, openness.

I. INTRODUCTION

L ANDSCAPE quality assessment is becoming a major
component in spatial planning owing to increasing interest

in the concept of sustainability including aspects related to the
quality of life (QOL) and of landscapes [1]. Previous studies and
theories [2] suggest an influence of the landscape visual quality in
urban areas on criminal [3], [4] and health behaviors [5], [6],
which are significant factors determining the QOL. Therefore,
evaluative maps of landscape visual quality based on human
perception or, in the case of this study, machine-modeled human
perception, are helpful for policy makers, space planners, and
architects to plan and design the appearance of urban areas that
are attractive to inhabitants [7].

The assessment of landscape visual quality is a challenging
issue because there are many objective factors that affect sub-
jective human perceptions. Psychophysical preference modeling
is one of the quantitative holistic techniques of landscape
evaluation that mix subjective and objective methods [8], [9].

This approach relates psychological human preference data to
physical landscape component data in a mathematical manner,
which mainly consists of three steps: 1) collection of human
perception data for a number of different landscapes; 2) physical
feature extraction from these landscapes; and 3) learning the
relationship between human perception and physical feature
datasets. Quantitative human perception data of landscape qual-
ity have commonly been collected by surveys that use ground-
based color photographs and scoring methods, such as paired
comparisons, Likert scales, and ranking scales [4], [9], [10].
Physical characteristics of landscapes can be extracted from
color photographs by manual segmentation [9]. Multivariable
linear regression analysis have been widely used to find psycho-
physical predictive models that relate physical features to land-
scape quality [1], [11], [12]. Even when a predictive model is
obtained, the creation of evaluative maps of landscape visual
quality is time-consuming, and it is not feasible to take photo-
graphs everywhere to extract physical features. Geographic
information systems (GISs) and computer vision are useful for
calculating key visual features from any viewpoint over a large
area to assess landscape quality [1], [13]. Wu et al. reported that
biological and physical characteristics defined by classification
havemajor influences on landscape visual quality [1].Weitkamp
et al. proposed a GIS-based procedure for measuring landscape
openness [13], [14] using depth information, which is an impor-
tant part of our understanding and appreciation of landscapes
[15]. Therefore, remotely sensed data, computer vision, and
machine learning techniques have major potential for extracting
the physical features of landscapes at a low cost.

Hyperspectral imaging is a promising remote sensing tech-
nology for generating classification maps. A continuum spec-
trum enables the accurate identification and classification of
land-cover classes that are spectrally similar. Many researchers
have investigated hyperspectral classification and shown its
validity in mineral mapping, tree species discrimination, and
urban classification [16]–[18]. Land-use and land-cover classifi-
cation maps are basic information of GISs. Light detection and
ranging (LiDAR) is an active remote sensing technique that uses
electromagnetic energy in the optical range to determine the
distance between the instrument and a target surface and deduce
physical properties of the target based on the interaction of the
radiation with the target [19]. LiDAR has a wide range of
applications, such as atmospheric monitoring and canopy height
analysis [20], [21]. Mapping LiDAR data is an accurate tool for
obtaining a digital surface model (DSM) and a digital terrain
model (DTM). Such data are rasterized 2.5D data and useful for
visible area analysis. Openness can be quantified using depth
information of sight [13], [14], which is calculated from a DSM.
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Moreover, the joint use of optical and LiDAR data is effective for
accurate classification, e.g., tree species classification [22]–[25].
Therefore, the fusion of hyperspectral and LiDAR data is
promising for extracting important physical features related to
landscape quality.

In this work, we present a new methodology that fuses an
airborne hyperspectral image and a LiDAR-derived DSM for
landscape visual quality assessment. The main objective of this
work is to propose a framework that relates landscape physical
features to the human perception of such features, not to develop
a general psychophysical relationship. Landscape physical fea-
tures, such as openness and proportions of land-cover classes for
a given view, are extracted from the hyperspectral image and a
LiDAR-derived DSM. The relationship between physical fea-
tures and human landscape quality assessment based on ground-
based images is learned by least absolute shrinkage and selection
operator (LASSO) regression [26]. This framework enables the
prediction of landscape quality from any viewpoint using large-
scale remote sensing observation.

This paper is organized as follows. Section II describes the
methodology for predicting landscape visual quality by fusing an
airborne hyperspectral image and a LiDAR-derived DSM. An
experimental study using the datasets provided for the 2013
IEEE GRSS Data Fusion Contest and images collected from
Google Street View is presented in Section III. The conclusion is
given in Section IV.

II. METHODOLOGY

The methodology presented in this paper is divided into three
main steps, as shown in Fig. 1. Each step is summarized as follows.

1) Viewpoint selection andhuman scoring:Weprepare human-
perception data by collecting landscape photographs taken
at various locations and view angles and asking people to

rate their visual quality, which is a common technique for
measuring landscape preferences [7], [9], [10]. Ground-
based landscape photographs are acquired from Google
Street View [27].

2) Openness and classification: We calculate physical fea-
tures, such as openness, proportions, and average depths of
land-cover classes in a field of view, at the collected
viewpoints in the first step using the DSM and classifica-
tion map derived from hyperspectral and LiDAR data.

3) Regression and prediction: LASSO regression is applied
to the datasets using physical features and human prefer-
ence scores as input and target variables, respectively [26].
Once the predictive model is learned by LASSO regres-
sion, the landscape visual quality can be predicted at any
viewpoint.

The three novel points of our method are summarized as
follows: 1) ground-based color photographs are collected using
Google Street View; 2) physical features are automatically
extracted using remote sensing data and computer vision; and
3) LASSO regression is adopted to learn the psychophysical
model that relates physical features to human-perception-based
landscape quality data. More details about the calculation of
openness and classification using the hyperspectral image and
LiDAR-derived DSM and as well as LASSO regression are
given in Sections II-A, II-B, and II-C respectively.

A. Openness

Weitkamp et al.measured the visible space using the average
line of sight in a two-dimensional (2-D) space to assess landscape
openness [13], [14]. Terrain and building datasets [Fig. 2(a)] are
merged to create contour lines, and a visible space is identified
using viewing limitations as shown in Fig. 2(b). The average
length of radials is highly correlated with perceived openness
[14].We extend this approach to a three-dimensional (3-D) space
and define openness as the average value of a depth image

Fig. 1. Overview of the proposed method.

Fig. 2. (a) Terrain and building datasets. (b) Visible space in 2-D with contour
lines. (c) Depth map from a viewpoint.
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obtained at a viewpoint [Fig. 2(c)]. Note that depth values are
assigned to nonsky objects to avoid including the infinite depth of
the sky in the calculation of openness. When the location and
direction of an observer are given, the depth of the direction can
be calculated by computing the intersection of the DSM and the
line-of-sight vector. Depth values are estimated on radials with
1 spacing in the vertical and horizontal directions. The maxi-
mum horizontal and vertical ranges of the viewing angle were
both set to 90 considering the approximate field of view of the
Google Street View images. This field of view can be an
approximation of human binocular vision that covers 120
horizontally and 60 vertically [28].

B. Classification

In this work, we begin with the use of airborne data taken over
urban areas with a small number of training samples. Shadows
contained in observed data have a major influence on classifica-
tion. Therefore, as a preprocessing step, shadows in the hyper-
spectral data need to be modified. Shadows caused by buildings
and clouds are modified using line-of-sight analysis and by
thresholding illumination distributions, respectively [29], [30].
When the DSM is directly used for classification, various heights
of the terrain may result in classification errors. Therefore, the
DTM is estimated from the DSM by extracting buildings and
trees by thresholding local height information [31] and interpo-
lating extracted segmentations. The normalized DSM (NDSM),
which is the height of features relative to the ground, is generated
by subtracting the DTM from the DSM.

After the preprocessing, we apply the nearest neighbor (NN)
algorithm to a fused feature, i.e., the cosine similarity of spectra
and the NDSM difference. The NDSM difference is normalized
and fusedwith the cosine similarity using aweighted summation.
A class label of a test point is estimated by

N

where is a reference point belonging to class
, with being the number of classes.

denotes the spectrum of point , and and indicate the DSM
and NDSM values, respectively. is the variance of a Gaussian
function defined by statistical analysis of theNDSMdata and is
a weight coefficient determined by cross-validation. The final
classification result is obtained by applying iterative bilateral
filtering [32] to the NN classification map to reduce noise. We
extend the normal bilateral filter to higher dimensions, i.e., a 3-D
location for geometric closeness and a spectrum for photometric
similarity. Finally, the test point is classified as

N N

where when belongs to class and
otherwise. denotes the Euclidean distance and and are
the geometric and photometric spread parameters, respectively.

is a normalization term defined by N
N . An iterative bilateralfilterwith a

small window acts as an edge-preserving and noise-reducing
smoothing filter for the classification map. By combining the
classification map with the 3-D virtual view, proportions and
average depths of land-cover classes occupied in a given field of
viewcanbecalculated,whichare keyphysical features influencing
perceived landscape quality [1], [15]. In addition to land-cover
classes, we also consider the proportion of sky as a physical feature
of landscapes. Here, the proportion of a class in a field of view
indicates how much of the class exists in a 2-D view image. The
average depth of a class indicates how far pixels assigned to the
class in a 2-D view image are located from the viewpoint on
average, which can be interpreted as class-labeled openness.

C. LASSO Regression

The objective of the learning phase is to reveal the relationship
between physical features of a landscape and human landscape
perception and to construct a prediction model for a new input.
Multivariable linear regression isusefulowing to itsmathematical
simplicity andphysical interpretability.Openness, the proportion
of sky, and the proportions and average depths of land-cover
classes in a field of view are selected as features and used as input
variables( R ). and denote the numbers of samples
and variables, respectively. Human scores for landscape visual
quality are used as target values ( R ). All input variables
are standardized with zero mean and unit variance to investigate
their impacts on landscape visual quality. The least-squares
method is the simplest method of regression; however, it suffers
from overfitting. Regularized least-squares methods that add
penalty terms of regression parameters to the objective function
are useful to avoid this problem and produce robust results. We
adopt LASSO regression [26], which is one of the regularized
least-squares methods and uses the -norm of the parameter
vector as a penalty term. We can assume without loss of
generality that . The LASSO estimate is formulated by

where R is the parameter vector and is the tuning
parameter. This problem may be solved by convex optimization.
In LASSO regression, more of the parameters become zero as the
penalty is increased, whereas in ridge regression, which uses the

-norm for the penalty, the parameters are reduced but remain
nonzero. The former property results in the straightforward physi-
cal interpretation of regression parameters, which is the reason
why we choose LASSO regression as the regression method. The
difference between least-squares and LASSO regression is dis-
cussed inSection III. The tuningparameter can bedeterminedby
leave-one-out cross-validation in which the tradeoff between the
sparsity of parameters and thefitting of the regression is examined.

III. EXPERIMENTAL STUDY

A. Datasets

In this work, we used the hyperspectral image and LiDAR-
derived DSM distributed by the 2013 IEEE GRSS Data Fusion
Contest. The two images have the same size ( )

YOKOYA et al.: FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR LANDSCAPE VISUAL QUALITY ASSESSMENT 2421



and ground sampling distance (GSD) (2.5 m). The hyperspectral
data have 144 spectral bands in the 380–1050 nm region. The
dataset was acquired over the University of Houston campus and
the neighboring urban area. The RGB image of the study area is
shown in Fig. 3(a). The ground truth of 15 classes is provided by
the Best Classification Challenge of the 2013 IEEE GRSS Data
Fusion Contest. Each class of the ground truth consists of
approximately 200 pixels.

Parking lots and cars were merged, and synthetic grass, tennis
courts, and running tracks, which do not exist in the study area,

were excluded. Furthermore, we manually assigned the “walk-
way” class to 255 pixels from pavements on the campus into the
ground truth, so that they can be distinguished from spectrally
similar classes, such as “roadways.” The final ground truth
consisted of 12 classes, i.e., healthy grass, stressed grass, trees,
soil, water, residential, multistory buildings, roadways, high-
ways, railways, parking lots, and walkways. Since we use
openness, the proportion of sky, and the proportions and average
depths of 12 classes as inputs, the number of variables is 26.

We collected 200 view images taken on the ground at 50
locations from four directions using Google Street View in this
area. The 50 locations are shown in Fig. 3(a) as white crosses and
the four directions are north, south, east, and west. In this
experiment, we fixed the training data to 100 randomly chosen
views and used the remaining 100 views as test data. Subjective
human landscape preferences can be influenced bymany factors,
such as culture, nationality, generation, and personality. The
main objective of this work is to present a framework that relates
physical features to human perception to construct a predictive
model of landscape quality using remote sensing data, not to
reveal a general psychophysical relationship. Therefore, we
chose a specific group of people, i.e., eight students from the
University of Tokyo, Japan, and asked them to give preference
scores between 1 and 10 assuming that they have similar back-
grounds owing to their common culture and generation. Their
average scores were used as target values.

Fig. 3. Physical features obtained from hyperspectral and LiDAR data. (a) RGB.
(b) Classification. (c) Depth and classification images with views from top to
bottom.

TABLE I
R-SQUARED AND PEARSON’S CORRELATION VALUES OF LEAST SQUARES AND LASSO

Fig. 4. Scatter plot showing human-perceived and machine-predicted scores for
the test data with the corresponding views.
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B. Results and Discussion

Fig. 3(b) shows the classification map estimated by our
method. The presented method achieved 90.65% classification
accuracy in the Best Classification Challenge of the 2013 IEEE
GRSS Data Fusion Contest [33]. Fig. 3(c) shows the depth,
classification, and view images for the locations and directions
shown by four arrows in Fig. 3(a). Although the camera model of
the depth images and classification maps is different from that of
the subimages of Google Street View, Fig. 3(c)(i), (ii), and (iv)
show the consistent appearance of the major-class distribution
between classification images and ground-based photographs,
which indicates that the physical features at a viewpoint can be
approximately extracted by the proposedmethod. The advantage
of the use of remote sensing data is that physical features can be
computed at any viewpoint of a large area. Some differences
between the photographs and the classification images of views
are caused by the limitation of remote sensing images. In the
classification image of Fig. 3(c)(ii), the walkway is misclassified
as grass owing to the mixed pixel spectra. A smaller GSD may
allow the more accurate extraction of features from a landscape.
Most attempts to create regression models of landscape quality
have been applied to rural landscapes [9], [10]. There are more
buildings in urban areas, resulting in a significant difference in
the landscape at a smaller geometric scale depending on the
location and viewing direction. Therefore, spatially detailed
information is more important for urban areas, whereas spatially
larger datasets may be required for rural areas owing to there
being fewer obstacles and better viewing conditions. In Fig. 3(c)
(iii), the visibility of the classification view image under trees is
different from that of the photograph owing to the complicated
3-D structures of trees and the occlusion of the walkway. The
LiDAR-derived DTM and DSM have only 2.5D information,
meaning that a single value of elevation is provided for an entire
cell, which is the elevation of the perceived ground or the
elevation of the first detected return, respectively. If the full
3-D information contained in the LiDAR point cloud is used,

better-matching synthetic images could have been obtained with
respect to the ground-based photographs used for the regression.

R-squared and Pearson’s correlation values were used to
evaluate the agreement between the machine-predicted score,
which is the output of the regression model, and the human-
preference score. Table I shows a comparison between LASSO
regression and the least-squares method for both the training and
the test data. LASSO regression exhibits a more accurate and
robust performance than the least-squares regression for the test
data. Fig. 4 shows a scatter plot of the human-preference and
machine-predicted scores obtained using the test data along with
the corresponding views. This plot intuitively visualizes the
similarity between machine predictions and human perceptions
and reveals both the correlation and the misalignment obtained
by the proposed method. Fig. 5 shows histograms that represent
the distributions of the 100 training samples for all input vari-
ables. A wide range in the relative occurrence of different
variables can be observed. Fig. 6 shows the coefficients of the
least-squares and LASSO regression, which were used to inves-
tigate physical factors that influence landscape visual quality.We
can find differences between the two methods in terms of the
scale and sparsity of the coefficients aswell as their signs for class
proportions of human-made structures. In the least-squares
regression, it ismore difficult to interpret the coefficients because
all the coefficients of class proportions except for soil have
positive values. In LASSO regression, several coefficients are
zero owing to the regularization, which results in a straight-
forward interpretation of the trained model. Openness and the
proportions of sky, trees, and water have positive impacts on
landscape quality, whereas those ofmost human-made structures
have negative impacts. This result is consistent with other
landscape studies [1], [7], [9], [12]. In particular, the proportion
of water has the largest positive impact; water exists in the form
of fountains and a small natural lake on this campus. It is inter-
esting that there are clear differences between the landscape-
quality impact of walkways and other human-made structures
and also between grass and trees, which are spectrally similar
classes. Detailed and accurate classification by the joint use of a
hyperspectral image and a LiDAR-derived DSM enables a
meaningful model of landscape quality prediction to be learned.

Fig. 5. Histograms of training samples for all input variables.

Fig. 6. Regression coefficients (blue: least squares and red: LASSO).
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Finally, we show an application of the proposed method of
landscape assessment. Since the model is already learned and all
physical features can be calculated from the hyperspectral image
and LiDAR-derived DSM, we can automatically predict the
landscape visual quality from any 3-D location and direction.
We focused on one building, as shown on the left of Fig. 7, and
predicted the landscape visual quality scores for the views from
all floors. The upper-right images of Fig. 7 show the predicted
score maps for the views from the four sides of the building. At
this location, the landscape quality is high mainly because of the
high openness and proportions of sky, trees, and water. Conse-
quently, views from the higher floors, where a fountain can be
seen and the openness and the proportion of sky are greater, have
higher landscape scores. The three images in the bottom-right of
Fig. 7 show virtual RGB views from three representative points.
As described earlier, the proposed system can predict the land-
scape visual quality at any viewpoint in the study area. This
predictive method will effectively predict the landscape visual
quality for the given demographic that it was trained for.

IV. CONCLUSION

In this work, we presented a novel method of fusing a
hyperspectral image and a LiDAR-derived DSM for landscape
visual quality assessment. The physical properties of objects and
the openness in a view are assumed to be important factors
influencing landscape quality. The datasets of the 2013 IEEE
GRSS Data Fusion Contest were used in the experimental study,
and an accurate classification map was obtained by fusing
spectral and 3-D spatial information. Using a LiDAR-derived
DSM and the classification map, depth and classification maps
from any viewpoint could be estimated. LASSO regression was
adopted to learn a psychophysical predictive model that relates
physical features to human preference scores with meaningful
regression coefficients. Physical feature extraction by the joint
use of the hyperspectral image and LiDAR-derived DSM reveals
the differences in the landscape-quality impact between spec-
trally similar land-cover classes and enables the prediction of
landscape quality from any 3-D viewpoint over a large area. This
work is expected to contribute to automatic landscape assess-
ment and optimal spatial planning using remote sensing data.
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