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ABSTRACT

This paper presents a new methodology for classification of
local climate zones based on ensemble learning techniques.
Landsat-8 data and open street map data are used to extract
spectral-spatial features, including spectral reflectance, spec-
tral indexes, and morphological profiles fed to subsequent
classification methods as inputs. Canonical correlation forests
and rotation forests are used for the classification step. The fi-
nal classification map is generated by majority voting on dif-
ferent classification maps obtained by the two classifiers using
multiple training subsets. The proposed method achieved an
overall accuracy of 74.94% and a kappa coefficient of 0.71 in
the 2017 IEEE GRSS Data Fusion Contest.

Index Terms— Local climate zones (LCZs), canonical
correlation forests, rotation forests, morphological profiles.

1. INTRODUCTION

In recent years, there has been a growing interest in the map-
ping of local climate zones (LCZs) for urban temperature
studies [1]. LCZs comprises 17 classes based on properties
of 3D surface structure (e.g., height and density of buildings
and trees) and surface cover (e.g., previous or impervious).
The classification of LCZs is a challenging task due to a large
intra-class variability of spectral signatures caused by the
regional variations of vegetation and artificial materials.

The LCZ classification scheme has been successfully
developed via the World Urban Database and Access Por-
tal Tools (WUDAPT1) to collect information regarding the
form and function of cities worldwide [2]. The contributors
of WUDAPT create training data using high-resolution im-
ages obtained by Google Earth. The LCZ classification is
performed on Landsat data using random forests [3] in a Sys-
tem developed for Automated Geoscientific Analyses (SAGA
GIS). Although the scheme has been well established, it still
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requires an enormous amount of human efforts, particularly
for the specific step of creating training data.

To overcome this limitation, we promote innovative clas-
sification algorithms, which have high generalization ability
and transferability. Therefore, the Image Analysis and Data
Fusion Technical Committee (IADFTC) of the IEEE Geo-
science and Remote Sensing Society (GRSS) organized the
contest of the LCZ classification in 2017, aiming at accelerat-
ing progress on data fusion methodologies for multitemporal,
multisource, and multimodal remote sensing data.

We present here a new multimodal data fusion method-
ology for the LCZ classification based on ensemble learning
techniques. Canonical correlation forests (CCFs) [4] and rota-
tion forests (RoFs) [5] are applied to spectral-spatial features
extracted from satellite images and semantic layers. Our re-
sults achieved an overall accuracy of 74.94%, which ranked
first in the contest among more than 800 submissions.

The remainder of the paper is organized as follows. Sec-
tion II describes the data sets provided by the fusion com-
mittee for the contest. Section III introduces our proposed
methodology. Experimental results and discussion are pre-
sented in Section IV. Section V concludes the paper.

2. DATA SETS

The data sets comprise multitemporal, multisource, and mul-
timodal data for nine cities: five cities (i.e., Berlin, Rome,
Paris, Sao Paulo, and Hong Kong) for training and four cities
(i.e., Amsterdam, Chicago, Madrid, and Xi’an) for testing.
For each city, the following three kinds of image data have
been provided for the contest.

• Landsat data2: Eight multispectral bands (i.e., visible,
short and long infrared wavelengths) resampled at a
ground sampling distance (GSD) of 100 m with mul-
titemporal (i.e., 2-6) acquisitions.

• Sentinel-2 data: Nine multispectral bands (i.e., visible,
vegetation red edges and short infrared wavelengths)
resampled at a 100 m GSD for a single acquisition.

2Courtesy of the U.S. Geological Survey



Ŷ 1
Ŷ 2
Ŷ 3
Ŷ 4
Ŷ 5
Ŷ 6
Ŷ 7
Ŷ 8
Ŷ 9
Ŷ 10
Ŷ 11
Ŷ 12
Ŷ 13
Ŷ 14
Ŷ 15
Ŷ 16
Ŷ 17

(a) Berlin (e) Hong Kong(c) Paris (d) Sao Paulo(b) Rome

Fig. 1. Color composite images (top) and ground truth (bottom) for five training cities: (a) Berlin, (b) Rome, (c) Paris, (d) Sao
Paulo, and (e) Hong Kong.

Table 1. LCZs and numbers of pixels for training and test.
No. Color Name Train Test

1 � Compact high-rise 1642 242
2 � Compact mid-rise 6103 4892
3 � Compact low-rise 5738 1522
4 � Open high-rise 2098 2270
5 � Open mid-rise 4759 2255
6 � Open low-rise 8891 8265
7 � Lightweight low-rise 0 0
8 � Large low-rise 4889 11230
9 � Sparsely built 1156 1072
10 � Heavy industry 449 920
11 � Dense trees 17716 3170
12 � Scattered trees 2819 4528
13 � Bush, scrub 1741 1284
14 � Low plants 14457 12994
15 � Bare rock or paved 323 1104
16 � Bare soil or sand 503 391
17 � Water 8561 4454

• Open Street Map (OSM) data3: Three layers of “build-
ings,” “land-use,” and “water” at a 5 m GSD.

For the training cities, ground-truth samples of the LCZ
classes were provided in several areas of each city in the form
of raster images at a 100 m GSD. Table 1 summarizes class
names and colors of the LCZ classes and the numbers of pix-
els for training and test. Fig. 1 shows the color composite
images created from the Landsat-8 data as well as the ground-
truth maps for the training cities.

Among the data mentioned above, only Landsat and OSM
data have been used in this work. We used Landsat data but
not Sentinel-2 data to exploit long infrared wavelengths. By
using the available time-series of the Landsat data, one can
take temporal-spectral variability into consideration to effec-
tively train the classifiers. It should be noted that the original
Landsat-8 images at a GSD of 30 m were downloaded via
Amazon Simple Storage Service (Amazon S3) for all images
provided in the contest. All eleven bands were used as input,
which is detailed in the next section.

3Data c©OpenStreetMap contributors, available under the Open Database
Licence http://www.openstreetmap.org/copyright

3. METHODOLOGY

Fig. 2 illustrates the flowchart of our algorithm developed for
the classification of LCZs in the framework of the 2017 IEEE
GRSS Data Fusion Contest. The algorithm is mainly com-
posed of four steps: preprocessing, feature extraction, classi-
fication, and postprocessing as detailed below. Due to the fact
that the number of available data sets and the corresponding
training samples provided by the fusion committee was high,
a particular emphasis in the proposed framework was dedi-
cated to fast, automatic, yet effective approaches to achieve
accurate results in an acceptable CPU processing time.

3.1. Preprocessing

Atmospheric correction was performed on the original Landsat-
8 images using ATCOR-2/3 version 9.0.0 with the haze re-
moval option. The Landsat-8 images were upsampled at a
GSD of 10 m using bicubic interpolation. The subareas used
in the contest have been extracted using sub-pixel precision
image matching based on phase correlation at a GSD of 100
m. All OSM images have been normalized between 0 and
1 and spatially downgraded to a GSD of 10 m to reduce the
computational cost in the subsequent processing steps.

3.2. Feature Extraction

The Landsat-8 images as well as the OSM images have been
investigated to extract input features suitable for the classi-
fication of LCZs. A total number of 44 features, which are
composed of spectral reflectance, spectral indexes, and spatial
features, have been extracted at a GSD of 100 m as described
in detail below:

• Mean and standard deviation have been calculated for
each patch of 10 × 10 pixels for all bands of the 10
m-GSD Landsat-8 data (22 features).
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Fig. 2. Flowchart of the classification algorithm.

• Mean and standard deviation have been calculated for
each patch of 10× 10 pixels for three indexes obtained
from the 10 m-GSD Landsat-8 data, namely, the nor-
malized difference vegetation index (NDVI), the nor-
malized difference water index (NDWI), and the bare
soil index (BSI) (6 features). The advantage of using
these indexes has been already shown for LCZ classifi-
cation [2].

• Mean has also been calculated for each patch of 10×10
pixels for the 10 m-GSD OSM images of “buildings,”
“land-use,” and “water” (3 features).

• Morphological profiles (MPs) [6] composed of open-
ing and closing by reconstruction have been used to ex-
tract spatial information from the 10 m-GSD NDVI and
OSM “building” images. To do so, a circular structur-
ing element with threshold values of 1, 2, and 3 have
been taken into account (14 features).

3.3. Classification

Two ensemble learning methods, namely CCFs4 [4] and
RoFs [5], were used for the classification step. For rotation of
feature axes before constructing decision trees, CCFs adopt
canonical correlation analysis between features and labels,
whereas RoFs use random splits of features and principal
component analysis. The superior performance of these two
ensemble classifiers have been already proven in the remote
sensing community in terms of classification accuracy, CPU
processing time, and generalization capability [7].

The number of trees was set to 20 for both methods with
reference to the studies reported in [7]. 15 different train-
ing data sets were prepared. The first ten sets were created
by splitting the whole training data provided by the fusion
committee into ten subsets whereas the other five sets were
obtained by randomly extracting the same number of training
samples (i.e., 500) for all classes. In this way, one can in-
crease the diversity of the forests, which plays an important
role to boost the classification performance of ensemble and
multi-classifiers. Although some classes include fewer than
500 training pixels, the total number of training samples for
all classes is over 500 since each city has multiple Landsat-8
images. It should be noted that some Landsat-8 images that
include clouds were not used for the training step. Both CCF
and RoF were built on each training data set, resulting in 30

4The source code is available at https://bitbucket.org/twgr/ccf

Table 2. OA and kappa for two versions of training data.
Sampling of training data OA (%) Kappa

Uniform 70.29 0.66
Uniform & imbalance-corrected 74.94 0.71

different forests in total. Classification was performed on se-
lected cloud-free images for each city using CCFs and RoFs.

3.4. Post-processing

Spatial filtering was applied to all classification maps using a
3× 3 median filter to reduce the labeling uncertainty and salt
and pepper appearance of labeled pixels. The final classifica-
tion map was obtained using majority voting on 15×N clas-
sification maps obtained by each ensemble learning method,
where N is the number of Landsat-8 images for each city. For
the final classification maps, the results of CCFs were used for
Amsterdam, Chicago, and Xi’an, whereas those of RoFs were
used for Madrid.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Fig. 3 shows the LCZ classification maps for the test cities
obtained by the proposed algorithm. Our result achieved an
overall accuracy (OA) of 74.94% and a kappa coefficient of
0.71. Table 2 shows OA and kappa for two versions of our
results. The first one was obtained by using the first ten train-
ing data sets with uniform sampling (i.e., different numbers
of training samples for different classes). The second one
demonstrates our final result obtained by merging the results
with the other five training data sets, which include the same
number of training samples for all classes (i.e., imbalance-
corrected sampling). By integrating the classification results
obtained using the additional five subsets of training data, the
classification accuracy of minor classes has been increased,
leading to the improvement of the overall result.

Table 3 presents the confusion matrix with the producer’s
accuracy (PA) and the user’s accuracy (UA) for the final re-
sult to further analyze the performance of our algorithm. The
classification accuracies of classes 6, 8, 11, 14, 16, and 17 are
relatively high, achieving over 75%. Many of those classes
include a high number of training samples as shown in Ta-
ble 1. For instance, classes 6, 11, 14, and 17 have more than
8000 pixels for training. These results demonstrate that high
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Fig. 3. LCZ maps for four test cities: (a) Amsterdam, (b) Chicago, (c) Madrid, and (d) Xi’an.

Table 3. Confusion matrix.
Ground truth UA (%)1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17

Pr
ed

ic
tio

n

1 167 151 15 1 1 2 20 0 24 0 0 0 0 0 1 0 43.72
2 2 3033 321 97 166 41 16 0 3 0 0 0 0 0 0 0 82.44
3 0 181 624 125 6 230 375 0 46 0 0 0 84 67 0 0 35.90
4 12 350 18 1243 121 52 81 0 8 1 15 0 1 0 0 9 65.04
5 0 469 202 242 1540 1223 74 0 1 5 114 0 1 11 0 0 39.67
6 1 343 168 250 252 6432 1004 86 85 65 227 12 330 25 0 16 69.19
8 59 294 149 290 154 89 9055 0 625 25 66 0 51 429 15 80 79.56
9 0 0 0 2 0 13 124 18 1 10 10 0 7 13 0 11 8.61
10 0 0 0 15 1 5 305 1 92 5 21 0 3 107 16 23 15.49
11 0 0 0 0 0 6 14 28 20 2690 201 11 207 2 0 3 84.54
12 0 2 2 0 6 50 7 0 0 190 3230 131 454 300 0 6 73.78
13 0 11 2 0 7 66 3 10 0 2 391 940 57 11 0 0 62.67
14 1 57 18 2 1 55 96 929 6 177 233 190 11788 29 26 28 86.45
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 —
16 0 0 16 0 0 0 45 0 9 0 0 0 1 78 294 6 65.48
17 0 1 0 3 0 1 11 0 0 0 20 0 10 32 39 4272 97.33

PA (%) 69.01 62.00 40.65 54.76 68.29 77.82 80.63 1.68 10.00 84.86 71.33 73.21 90.72 0.00 75.19 95.91

generalization ability and transferability of classifiers can be
obtained by feeding sufficient training data to the algorithm.

On the other hand, the classification accuracies of classes
3, 4, 9, 10, and 15 are poor (less than 60%). There are two
different reasons: (1) For classes 10 and 15, the number of
training samples is relatively limited, which makes it impos-
sible to learn intra-class variability in an effective way. As a
result, it is difficult to increase the generalization ability and
transferability of the classifiers. (2) Classes 3, 4, and 9 are
misclassified into classes whose spectral-spatial features are
similar. For instance, the following class pairs are confused:
classes 2 and 3, classes 4 and 5, classes 9 and 14. To distin-
guish these pairs, a digital surface model is a key data source.

5. CONCLUSION

We proposed a new methodology for LCZ classification based
on ensemble learning techniques. CCFs and RoFs are applied
to classify spectral-spatial features (e.g., spectral reflectance,
spectral indexes, and MPs) extracted from the Landsat-8 and
OSM data. Our algorithm achieved 74.94% OA in the 2017
IEEE GRSS Data Fusion Contest.

Our future work will be on analysis of feature impor-
tance. Further study on investigating the impact of using
recent advances in spatial feature extraction (e.g., extinction

profiles [8]) will also be an interesting line of research.
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